A comparative study of medicinal plants used in rural areas of Namibia and Zimbabwe

Alfred Maroyi1* & Ahmad Cheikhyoussef2

1*Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; 2Science, Technology and Innovation Division, Multidisciplinary Research Centre, University of Namibia, Private Bag 13301, Windhoek, Namibia

E-mail: amaroyi@ufh.ac.za

Received 03 November 2014, revised 12 March 2015

Herbal medicines prepared from wild plants play an important role in the primary healthcare needs of people living in developing countries. A comparative ethnobotanical study was undertaken to document medicinal plants used in rural areas of Namibia and Zimbabwe. In order to document medicinal plants used for primary healthcare in rural areas of Namibia and Zimbabwe, 56 traditional healers were identified using the Participatory Rapid Appraisal (PRA) approach. Data was collected through semi-structured interviews, observation and guided field walks with the traditional healers, between January and October 2008. A total of 16 medicinal species belonging to 14 genera and 11 families were recorded in both Namibia and Zimbabwe. Three of these species (18.8%) had similar medicinal applications in the two countries. A total of 25 human health problems were treated by these medicinal species in Namibia, while 21 human and one veterinary health problems were treated with herbal medicines in Zimbabwe. General body pain, cold, cough, fever, flu and sore throat, dermatological and venereal diseases were treated with the highest number of medicinal plants in both countries. This comparative study revealed that traditional knowledge on herbal medicines is well founded.

Keywords: Ethnobotany, Namibia, Primary healthcare, Traditional medicines, Zimbabwe

IPC Int. Cl.: A61K36/00

Herbal medicines prepared from wild plants play an important role in the primary healthcare needs of people living in developing countries. There is an increasing adoption of the Western pharmaceutical drugs in developing countries, but traditional medicines still represent the main source of primary healthcare. In certain African countries, up to 90% of the population still relies exclusively on wild plants as sources of medicines. Although traditional medicines are recognised as important for maintaining the health of 70-80% of people living in rural and urban communities throughout the African continent, relatively little comparative studies have been done on utilisation of medicinal plants by various cultures or ethnic groups in the African continent. The majority of comparative studies on herbal medicines have been done in the developed countries. In one of the few comparative studies carried out so far in Africa, Towns & Van Andel examined how Beninese and Gabonese women utilized medicinal plants for maternal health problems. This study provides baseline data on how women in Benin and Gabon manage women’s reproductive health problems using medicinal plants and more importantly, use patterns across national boundaries is provided. Therefore, the objective of this study was to investigate the trends in medicinal plant usage in rural areas of Namibia and Zimbabwe.

Methodology

Study area and data collection

In Namibia, the study was conducted in 10 constituencies (Engodi, Genius, Okankolo, Olukonda, Omuntele, Omuthiya, Onayena, Oniipa,
Onyaanya and Tsumeb) in the Oshikoto region, and 7 villages (Chikato, Donga, Gamwa, Gundura, Hanke, Tongogara and Zvamatenga) in the Midlands Province, Zimbabwe (Fig. 1). In order to document medicinal plant use patterns in Namibia and Zimbabwe, field surveys were carried out between January and October 2008. Forty seven and 9 traditional healers were interviewed in Namibia and Zimbabwe, respectively. Members of the local community were asked to give the names of the most renowned traditional healers in the study area. Prior informed consent was sought from each participant before interviewing them and we adhered to the ethical standards of the International Society of Ethnobiology. Participatory Rural Appraisal (PRA) methods were used to systematically collect data on medicinal plant utilization (plant species and part(s) used, use(s) and preparation) and local name(s) of the plant species in question.

Plants mentioned by the participants during the interviews were collected. Plants were initially identified by participants with their vernacular names. Plants collected in Zimbabwe were verified at the National Herbarium and Botanic Garden, Harare (SRGH), while those collected in Namibia were verified using Tree Atlas species of Namibia. All plant scientific names, plant families and plant authorities were verified using internet sources such as the International Plant Name Index (www.ipni.org), the Missouri Botanical Garden’s Tropicos Nomenclatural database (www.tropicos.org) and the Royal Botanic Garden and Missouri Botanic Garden plant name database (www.theplantlist.org).

Data management and analysis
The data collected were entered in Microsoft Excel 2007 programme and were later analysed for descriptive statistical patterns. We followed the method proposed by Cook in classifying human ailments treated by herbal medicines. However, in some cases Cook’s categories were not precise enough and alternative ailment categories were used. Descriptive statistics, such as percentages and frequencies were used to analyse the data obtained from the questionnaires. Bar graphs were generated using Microsoft Excel 2007 programme.

Results

Medicinal plants diversity
A total of 16 plant species belonging to 14 genera and 11 families were used by residents of both the Oshikoto region in Namibia and the Midlands Province in Zimbabwe (Table 1). Almost all of the reported species are indigenous to the 2 countries, with the exception of *Ricinus communis* L., a well known cosmopolitan weed. Plant families with the highest number of medicinal plants were Ebenaceae, represented by three species, followed by Fabaceae sensu lato and Olacaceae and Rhamnaceae represented by two species each. The rest of the families were represented by one species each, as shown in Table 1. The genera with highest number of species were *Diospyros* and *Ximenia* represented by two species each.

Growth habit and parts used
Trees (56.3%) and shrubs (37.5%) were the primary sources of herbal medicines (Table 1). The plant parts used for making herbal preparations were the bark, fruits, kernel oil, leaves, roots, sap and seeds. The roots were the most frequently used (100% in both countries), followed by bark and leaves (62.5% each), fruits (18.8%), kernel oil (6.3%), seeds (12.5%) and sap (6.3%) (Fig. 2).

Ailments and diseases treated and herbal preparation
The majority of the medicinal species (56.3%) were used in the treatment of 2-4 ailments in both
Table 1—List of medicinal plants reported as useful in traditionally managing human and livestock diseases in Namibia and Zimbabwe. Species marked with asterisk (*) is exotic to both Namibia and Zimbabwe (contd.)

<table>
<thead>
<tr>
<th>Species and Family name</th>
<th>Growth habit</th>
<th>Namibia</th>
<th>Vernacular name (Oshiwambo)</th>
<th>Part(s) used and use(s)</th>
<th>Voucher number</th>
<th>Vernacular name (Shona)</th>
<th>Part(s) used and use(s)</th>
<th>Zimbabwe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berchemia discolor (Klotzsch) Rhamnaceae</td>
<td>Tree</td>
<td>IKSTF0001</td>
<td>Omaye</td>
<td>Bark, leaves: flu and cold, nose bleeding, skin itching</td>
<td>AM523</td>
<td>Nyii</td>
<td>Roots: abdominal pain</td>
<td>AM523</td>
</tr>
<tr>
<td>Diospyros lycoides Desf.; Ebenaceae</td>
<td>Shrub</td>
<td>IKSTF0031</td>
<td>Oshimama</td>
<td>Bark, leaves, roots: bleeding, fever, toothache</td>
<td>AM503</td>
<td>Musumhadombo</td>
<td>Roots: infertility in women</td>
<td>AM503</td>
</tr>
<tr>
<td>Diospyros mespiliformis Hochst. ex A.DC.; Ebenaceae</td>
<td>Tree</td>
<td>IKSTF0007</td>
<td>Omwandi</td>
<td>Roots: male dysfunction</td>
<td>AM333</td>
<td>Musuma</td>
<td>Roots: abdominal pain</td>
<td>AM333</td>
</tr>
<tr>
<td>Euclea divinorum Hiern; Ebenaceae</td>
<td>Shrub</td>
<td>IKSTF0536</td>
<td>Omudime</td>
<td>Bark, seeds: bleeding</td>
<td>AM401</td>
<td>Mushanguru</td>
<td>Roots: diarrhoea</td>
<td>AM401</td>
</tr>
<tr>
<td>Ficus sycomorus L.; Moraceae</td>
<td>Tree</td>
<td>IKSTF0044</td>
<td>Omukwiyu</td>
<td>Bark, leaves: constipation, dermatitis</td>
<td>AM301</td>
<td>Muonde</td>
<td>Roots: cough</td>
<td>AM301</td>
</tr>
<tr>
<td>Grewia flavescens Juss.; Tiliaceae</td>
<td>Shrub</td>
<td>IKSTF0011</td>
<td>Omushe</td>
<td>Leaves, roots: cough, diarrhoea</td>
<td>AM512</td>
<td>Mubhubhunu</td>
<td>Roots: menorrhagia</td>
<td>AM512</td>
</tr>
<tr>
<td>Peltophorum africanum Sond.; Fabaceae sensu lato</td>
<td>Tree</td>
<td>IKSTF0320</td>
<td>Omupalala</td>
<td>Fruits, roots: leg pain</td>
<td>AM309</td>
<td>Muzee</td>
<td>Bark, leaves, roots: diarrhoea, sore eyes, STI, syphilis, toothache</td>
<td>AM309</td>
</tr>
<tr>
<td>Pterocarpus angolensis DC, Fabaceae sensu lato</td>
<td>Tree</td>
<td>IKSTF0513</td>
<td>Omahuva</td>
<td>Bark, fruits, roots: bleeding, coughing, leg pain</td>
<td>AM284</td>
<td>Mubvamaropa</td>
<td>Bark, roots, sap: earache, infertility in women, menorrhagia, sore eyes, veterinary medicine</td>
<td>AM284</td>
</tr>
<tr>
<td>Ricinus communis L.; Euphorbiaceae</td>
<td>Herb</td>
<td>IKSTF0577</td>
<td>Olumono</td>
<td>Roots, seeds: epilepsy</td>
<td>AM290</td>
<td>Mupfuta</td>
<td>Roots, seeds: sore eyes, toothache</td>
<td>AM290</td>
</tr>
<tr>
<td>Sclerocarya birrea (A. Rich.) Hochst.; Anacardiaceae</td>
<td>Tree</td>
<td>IKSTF0023</td>
<td>Omugongo</td>
<td>Bark, kernel oil, leaves, roots: cough, ear infection, epilepsy, heartburns, tonsillitis, toothache</td>
<td>AM403</td>
<td>Mupfura</td>
<td>Roots: earache, sore eyes</td>
<td>AM403</td>
</tr>
<tr>
<td>Seëcriææa longepedunculata Fresen.; Polygalaceae</td>
<td>Shrub</td>
<td>IKSTF0565</td>
<td>Omudhika</td>
<td>Roots: stroke</td>
<td>AM285</td>
<td>Mufufu</td>
<td>Roots: epilepsy, snake repellant</td>
<td>AM285</td>
</tr>
<tr>
<td>Strychnos cocculoides Bak.; Loganiaceae</td>
<td>Tree</td>
<td>IKSTF0321</td>
<td>Omaguni</td>
<td>Roots: culture bound syndrome</td>
<td>AM478</td>
<td>Mazumwi</td>
<td>Roots: abdominal pains, apanrodiasic, gonorrhoea, infertility in men, sore throat</td>
<td>AM478</td>
</tr>
</tbody>
</table>

(continues)
Table 1—List of medicinal plants reported as useful in traditionally managing human and livestock diseases in Namibia and Zimbabwe. Species marked with asterisk (*) is exotic to both Namibia and Zimbabwe

<table>
<thead>
<tr>
<th>Species and Family name</th>
<th>Growth habit</th>
<th>Voucher number</th>
<th>Vernacular name (Oshiwambo)</th>
<th>Namibia</th>
<th>Voucher number</th>
<th>Vernacular name (Shona)</th>
<th>Zimbabwe</th>
<th>Part(s) used and use(s)</th>
<th>Part(s) used and use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vangueria infausta Burch.; Rubiaceae</td>
<td>Tree</td>
<td>IKSTF0575</td>
<td>Oshimbu</td>
<td>Leaves: dermatitis</td>
<td>AM400</td>
<td>Mudvirunombe</td>
<td>Roots: diarrhoea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ximenia americana L.; Olacaceae</td>
<td>Shrub</td>
<td>IKSTF0015</td>
<td>Kakakulu</td>
<td>Bark, leaves, roots: constipation, culture bound syndrome, gonorrhoea, scoliosis</td>
<td>AM439</td>
<td>Munhengeni</td>
<td>Leaves: backache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ximenia caffra Sond.; Olacaceae</td>
<td>Shrub</td>
<td>IKSTF0005</td>
<td>Ompeke</td>
<td>Bark, roots: culture bound syndrome, fertility/impotent, gonorrhoea, scoliosis, stomachache, unstable pregnancy</td>
<td>AM535</td>
<td>Mutengeni</td>
<td>Leaves, roots: aphrodisiac, backache, diarrhoea, venereal diseases, wounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziziphus mucronata Willd.; Rhamnaceae</td>
<td>Tree</td>
<td>IKSTF0002</td>
<td>Omukete</td>
<td>Bark, leaves, roots: gonorrhoea, skin allergy and rush, sore fingers</td>
<td>AM319</td>
<td>Muchecheni</td>
<td>Fruits, leaves, roots: abdominal pains, boil, infertility in women, wounds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

countries (Table 1). The following 7 plant species (43.8%) were used in the treatment of at least 5 ailments: *Ximenia americana* L. (5 ailments in total), *Peltophorum africanum* Sond. and *Strychnos cocculoides* Bak. (6 ailments each), *Sclerocarya birrea* (A. Rich.) Hochst. and *Ziziphus mucronata* Willd. (7 ailments each), *Pterocarpus angolensis* DC. (8 ailments) and *Ximenia caffra* Sond. (11 ailments). A comparison of medicinal applications showed that the majority of these species (81.3%) were used for different purposes in the two countries (Table 1, Fig. 3). Only three of the documented species (18.8%) had similar herbal applications in the two countries (Table 1). *Sclerocarya birrea* was used to treat ear infection in Namibia and earache in Zimbabwe (Table 1). *Ximenia caffra* was used as a remedy for fertility or impotence and gonorrhoea in Namibia and...
as an aphrodisiac and venereal diseases in Zimbabwe (Table 1). *Ziziphus mucronata* was used as herbal medicine against skin allergies and rashes in Namibia and remedy for boils in Zimbabwe (Table 1). A total of 25 human health problems were treated by herbal medicines in Namibia, while 21 human and one veterinary health problems were treated with herbal medicines in Zimbabwe (Table 1). General body pain, cold, cough, fever, flu and sore throat, dermatological and venereal diseases were treated with the highest number of medicinal plant species in both countries (Fig. 4).

Discussion

The results from this study showed similarity in herbal medicine applications in Namibia and Zimbabwe, regardless of cultural differences in study areas of language, religion and social organization. The following species documented in this study: *Berchemia discolor*, *Diospyros lycioides*, *Diospyros mespiliformis*, *Euclea divinorum*, *Peliophorum africanum*, *Pterocarpus angolensis*, *Ximenia americana*, *Ximenia caffra* and *Ziziphus mucronata* have also been reported as important herbal medicines in other previous studies in Namibia. Previous studies in Zimbabwe recorded *Euclea divinorum*, *Ricinus communis*, *Sclerocarya birrea*, *Securidaca longepedunculata* and *Ximenia caffra* among the most prescribed herbal medicines. Of the assessed medicinal plants, nine species (56.3%) are members of Ebenaceae, Fabaceae *sensu lato*, Olacaceae and Rhamnaceae families. Apart from being a reflection of the worldwide high number of species found in these families, this is also a reflection of the medicinal properties in the families.

Medicinal plants documented in this study are used to treat a number of diseases, ranging from general body pain to complicated conditions like epilepsy and sexual dysfunction (Table 1). General body pain, cold, cough, fever, flu and sore throat, dermatological and venereal diseases were treated with the highest number of species (Fig. 4). Venereal diseases and sexually transmitted infections in general are a major public health concern in Namibia and in Zimbabwe. Transmission rate of sexually transmitted infections in southern Africa is currently one of the highest in the world. According to Kambizi and Afolayan, sexually transmitted diseases (STDs), among them gonorrhoea, genital herpes, syphilis and hepatitis are common in local communities. Sexually transmitted infections are one of the most common reasons for people to use herbal medicines and visit traditional healers in Namibia, Zimbabwe and South Africa. Ethnobotanical surveys have been found to be one of the reliable approaches to drug discovery, and several active compounds have been discovered from plants on the basis of ethnomedical information and used directly as patented drugs. Therefore, medicinal plants used in communities are not only important as an integral part of the traditional medical system of local people, but could also play an important role as sources of pharmaceutical drugs in the future.

Conclusion

This study showed high similarities in traditional uses of medicinal plants among the studied areas in Namibia and Zimbabwe which could be used as confirmatory indicator for the effectiveness of the reported medicinal plants in treating many human ailments and diseases. Some of the plants discussed in this study have been used for centuries as traditional medicines and the knowledge accumulated in their utilization over generations will assist in identification and isolation of active principles in
medicinal preparations. Efforts should be made to start in-depth analytical studies to identify and validate the ethnomedicinal and pharmacological compounds of interest which may lead to new treatment and improve the primary healthcare of local communities. Further study may contribute to development of important pharmaceutical products for future use.

Acknowledgement
Authors are grateful to the traditional healers of Oshikoto region, Namibia and Nhema communal area, Zimbabwe for sharing their knowledge on medicinal plants. The authors would like to thank the Directorate of Research Science and Technology (DRST) of the Ministry of Education (now called Department of Tertiary Education, Science and Technology) for the financial support.

References