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Abstract

Disease mapping has important applications in public health because it enables the

identification of areas which are at high risk of particular health problems. It helps

visualising the spatial pattern of the disease distribution, which is of interest to

the health sector as it enables the sector to plan, evaluate and redesign prevention

and control strategies, and also make important policy decisions particularly for

geographically targeted intervention in resource poor settings. Analyses of spatial

disease patterns are generally based on data of a single disease and they are often

fraught with challenges that include lack of a representative sample, often incom-

plete and most of which may have measurement errors, and may be spatially and

temporally misaligned. This thesis focused on the development and extension of

statistical models with particular interest to dealing with misalignment, measure-

ment errors and jointly modeling of data from multiple sources.

The first objective was to estimate and map the risk of measles at a sub-region level

(i.e. constituency level) in Namibia using data obtained at the regional level. Direct

inferences at constituency level made on basis of the original level of aggregation

may lead to an inferential problem known as a misalignment in the statistical liter-

ature. Using measles data from Namibia for the period 2005-2014, both multi-step

and direct approaches were applied to correct the misalignment. The multi-step

approach model provided a relatively better model.

The second objective was to fit a spatio-temporal model while dealing with misalign-

ment and measurement error, again applied to measles data aggregated at regional

level over the period 2005 to 2014. Again this leads to a spatial misalignment prob-

lem if the purpose is to make decisions at constituency level. Moreover, data on

risk factors of measles were not available each year between 2005 and 2014. Thus,

assuming that covariates were constant through the study period would induce mea-

surement errors which might have effects on the analysis results. The multi-step

approach was further extended to include temporal effects and account for measure-

ment errors. Consequently, spatio-temporal models, which included Bernardinelli

and Knorr-Held approaches, and classical measurement error models were adopted.

Comparison of the results obtained from the näıve method (i.e. modelling that
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ignored errors in covariates) and those from the approach that accounts for mea-

surement errors showed that the latter modelling approach performed better than

the former. The study showed a spatio-temporal variation of the measles risk over

the 2009-2014 period.

The third objective of this study was to develop a joint spatial model for HIV preva-

lence, using two sources (i.e. 2014 National HIV Sentinel survey (NHSS) among

pregnant women aged 15-49 years attending antenatal care (ANC) and the 2013

Namibia Demographic and Health Surveys (NDHS)), which would enable the esti-

mation at any location of the constituency or district level while dealing with mis-

alignment in data. The shared component modelling approach was adopted through

the use of stochastic partial differential equations (SPDE). The bivariate modelling

approach developed allowed to combine two data sources that are available at dif-

ferent spatial levels in a single model and it catered for a specification of different

spatial processes through the link function. Findings revealed that health districts

and constituencies in the northern part of Namibia were highly associated with HIV

infection. Also, the study showed that the place of residence, gender, gravida, mar-

ital status, number of kids dead, wealth index, education, and condom use were

significantly associated with HIV infection in Namibia. Finally, it was shown that

the prediction of HIV prevalence using the NDHS data source can be enhanced by

jointly modelling other HIV data such as NHSS data.

In conclusion, results showed that the multi-step approach may be used to deal with

misalignment. Moreover, introducing the error model proved to be a useful approach

to correct for measurement errors in data and improve inferences in situations where

mismeasured values in covariates are encountered instead of näıve analyses that

ignore the presence of errors in measurements. Lastly, the thesis showed that the

prediction of HIV prevalence using the NDHS data source can be enhanced by jointly

modelling other HIV data such as NHSS data.
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Chapter 1

Introduction

1.1 An overview

Recent advances in geographic information systems (GIS) and the internet make it

possible to access spatial data in various forms that include point, line, area, surface,

etc. Most of the data are collected using surveys and they are spatially referenced

by locations that include districts, regions, constituencies, or any other administra-

tive areal units. With the increasing availability of geographically referenced data,

linking of collected data is indeed inevitable as the exploitation of this readily avail-

able information helps in avoiding the implementation of new and expensive data

collection methods. But one major concern is how best these data can be integrated

to answer real life problems. The integration of such information may require the

data transformation as the spatial process of interest intrinsically present in one

form of data may be completely different from the one observed in another form of

data. Thus, the development and application of spatial methods have to deal with

the issue of misalignment. In addition to misalignment, data might have errors.
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1.2 Conceptual framework and background to spa-

tial modelling

1.2.1 Conceptual framework

An interesting question which is quite common in public health studies is to find

out if people of similar characteristics will experience different health outcomes when

located in different areas. A positive answer will then imply that the area promotes

or inhibits health, over and above individual socio-economic characteristics. In their

study on neighborhoods and health, Diez Roux & Mair (2010) re-emphasized the

existence of the effects of physical and social neighborhood environments on the

health of residents of any communities or locations. They further indicated that a

better understanding of health or disease distributions requires both individual and

group characteristics.

Macintyre, Ellaway, & Cummins (2002) suggested three explanations for geograph-

ical variations in health. First, the characteristics of individuals concentrated in

particular places also known as compositional explanations; second, opportunity

structures in physical environments (for example, the availability of health environ-

ments and public or private services in support of people in their daily lives); and

third, socio-cultural and historical features of communities. Macintyre et al. (2002)

further linked these three explanations to Maslow hierarchy of human needs that

range from air to social, cultural, and physical recreation needs. Macintyre et al.

(2002) finally suggested that the basis for discovering how places impact on health

is to make use of a framework of universal human needs.

This study is hinged on such concepts as its conceptual framework to explain specific

pathways by which an area may affect, directly or indirectly, the spatial distribu-

tion of disease risk. Furthermore, the study followed the ontological framework of

space and time models by Peuquet (1999) expressed in a triad conceptual model

(i.e. what/where/when model) illustrated in Fig. 1.1. This concept allowed for the

inclusion of space, time, and interactions of space in modelling the distribution of

diseases burden (i.e measles and HIV).
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Figure 1.1: Illustration of a triad model: what/where/when

1.2.2 Background to spatial modelling

The classical book by Cressie (1993) distinguishes three main inferential frameworks

in spatial analysis, namely spatial point pattern analysis, geostatistical analysis,

and lattice or areal statistical analysis. In each of these inferential approaches, the

Bayesian inferential framework is preferred as it permits to derive posterior predic-

tive distributions for both parameters and epidemiological outcomes of interest. It

is also suitable when dealing with multiple sources of uncertainty and it enables to

incorporate additional sources of information in the form of prior knowledge (Liang,

Banerjee, Bushhouse, Finley, & Carlin, 2008). For areal models, conditional autore-

gressive (CAR) pioneered by Besag (1974) and further developed by Besag, York, &

Mollie (1991) has been commonly used to account for spatial variation (Jin, Carlin,

& Banerjee, 2005)).

In spatial analysis, there exist many challenges that include joint the modelling

of data from multiple sources, measurement errors in covariates or response vari-

able, specification of spatial-temporal trends, big ”N” problem, ”knotty” problem,

and boundary problem. In this review, the focus is on the following three main

challenges that constitute the core of the proposed study. The first challenge is to

combine data from multiple sources of data; followed by the measurement errors;

and the third issue is the specification of spatial-temporal trends.

Combining data from multiple data sources has several advantages. For example, it

may be expensive to conduct a new study for every new problem of interest. Thus,
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combining information from various sources can enable one to obtain more infor-

mation in the face of limited resources (Schenker, 2013). Also, merging information

from different sources helps to improve the estimation of related measures as one

source may be used to provide missing information in another (He, Landrum, & Za-

slavsky, 2014). Moreover, extracting information on the same collection of variables

but reported from different sources may lessen non-sampling errors that include

coverage error, errors due to missing data, nonresponse errors, and measurement

errors (Raghunathan et al., 2007). As a result of these strengths, a combination

of information from different sources is commonly used. For instance, Schenker,

Gentleman, Rose, Hing, & Shimizu (2002) combined data from two surveys in order

to extend the coverage; Raghunathan et al. (2007) pooled together data from two

surveys to estimate cancer prevalence rates; Schenker, Raghunathan, & Bondarenko

(2010) used information from an examination-based survey to enhance the analysis

of self-reported data in a large-scale health survey; and Manda, Masenyetse, Cai, &

Meyer (2015) jointly analysed the data from NDHS and ANC surveys to map HIV

prevalence. However, combining data might lead to problems if approriate methods

are not employed. For instance, if areal and geostatistical data are available, one

natural and commonly used way to combine data is to aggregate the geostatistical

data. Specific examples are näıve kriging methods and area-to-point kriging meth-

ods to collapse data in geographical units into their centroids (Goovaerts, 2008).

But by doing so, one loses attributes at individual level. Merging together data

sources available at different levels of aggregation may suffer from a misalignment

problem.

As much as the use of multiple source data may lead to bias in estimates due

to misalignment, the measurement error in spatial analysis is also a recognized se-

rious influential factor of wrong inferences of spatial effects. Measurement error

occurs in almost every discipline. Scholars have warned that ignoring measurement

error may for example lead to masking some important features of data, losing the

power of hypothesis testing of relationships among variables, and introducing bias

in estimates (Wattanasaruch, Pongsapukdee, & Khawsithiwong, 2012). Some of the

works dedicated to this problem include accounting for measurement error in covari-

ates through the use of hierarchical modelling in disease mapping (Xia & Carlin,
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1998); use of a structural modelling approach to deal with spatial covariates mea-

sured with errors (Yi, Tang, & Lin, 2009); adjustment of prevalence estimates using

sensitivity and specificity (Njai, Siegel, Miller, & Liao, 2011); computing adjusted

prevalence of transmitted HIV drug resistance as a ratio between a function of ex-

perienced tests with resistance and a function of total näıve tests (Castro, Pillay,

Sabin, & Dunn, 2012); estimation of a function of unobserved true values using

non-parametric deconvolution techniques, and the correction of measurement error

and /or misclassification using calibration methods (Wattanasaruch et al., 2012);

and correcting bias in ischemic heart disease using a semi-parametric regression ap-

proach (Huque, Bondell, Carroll, & Ryan, 2016).

Apart from the challenges arising from misalignment and measurement error, the

use of crude data to construct disease maps may lead to inaccurate maps (Hamp-

ton, Serre, Gesink, Pilcher, & Miller, 2011). Statistical analysis results are suitable

for the construction of accurate disease maps. Various techniques, which include

among others kriging, generalized linear and generalized linear mixed effects mod-

els are commonly used (Diggle, Tawn, & Moyeed, 1998; Hampton, Serre, Gesink,

Pilcher, & Miller, 2011; Lentz, Blackburn, & Curtis, 2011). Further examples in-

clude zero inflated Poisson (ZIP) models which have been used to map spatial rela-

tive risks meningococcal disease across Germany in 2004 (Gschlößl & Czado, 2008)

and diabetes incidence distribution patterns in the youth of South Caroline (Song,

Lawson, Agostino, & Liese, 2011); Mohebbi, Wolfe, & Forbes (2014) employed neg-

ative binomial and Poisson disease for mapping esophageal cancer incidence data in

the Caspian region of Iran; Arab (2015) analysed the spatio-temoral distribution of

Lyme disease in the Illinois county using hurdle models (Poisson and negative bi-

nomial) and zero-inflated models (Zero inflated Poission and Zero inflated negative

binomial(ZINB)); and Neyens et al. (2017) investigated the distribution of mesothe-

lioma in Flanders through Bayesian disease mapping models (i.e. combined Poisson

model and combined hurdle model).
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All these models can be generally extended to spatio-temporal models by including

a temporal component in the model. A review of some of the early work done by

different researchers in the context of count data modeling can be found in Lawson

(2013).

1.3 Orientation of the study and statement of the

research problem

1.3.1 Orientation of the study

Worldwide, there is a general increase in the burden caused by expenses related

to Human Immunodeficiency Virus (HIV) and related diseases or other diseases for

most countries. For example, UNAIDS World AIDS Day Report 2012 indicates that

domestic investments for the AIDS response increased from 3.9 billion US dollars in

2005 to almost 8.6 billion US dollars in 2011.

In Namibia, an HIV prevalence of 13.4% was observed in 2010/11 (UNAIDS, 2013).

Despite the encouraging news that about 70,000 new HIV infections are being

avoided annually, it is estimated that 29.7% of pregnant women aged between 35

years and 39 years are HIV positive (UNAIDS, 2013). As a process towards a

Namibia free of AIDS, the Namibian Government has increased domestic invest-

ments for the AIDS response. For instance, in the financial year 2008/09, the gov-

ernment funded 45.5% of the nation’s HIV response, which represented over 28% of

the total health budget (UNAIDS, 2013).

Furthermore, worldwide, measles is ranked among the leading causes of mortality es-

pecially among children in developing countries. For instance, in 2013, about 145,700

deaths were recorded (WHO, 2015). Deaths due to measles are quite common among

malnourished children and people whose immune system has been weakened by dis-

eases that include the human immunodeficiency virus/ acquired immunodeficiency

syndrome (HIV/AIDS). High death rates are commonly registered in developing

countries with low income per capita and poor health service systems (WHO, 2014).

As there is no antiviral treatment for the measles virus so far, measles vaccination
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and supportive care that includes good nutrition and adequate fluid intake have

been used to fight measles (WHO, 2015). But, the reduction of global funding has

largely affected the immunisation campaigns, which has hampered the efforts of a

complete elimination of measles (WHO, 2014). Consequently, measles cases are still

reported in many countries, with Angola, Ethiopia, Namibia, Bosnia and Herze-

govina, Georgia, Sri Lanka, and the Philippines being ranked among the top ten

countries with high annualised measles incidence per 100 000 inhabitants in 2014

(WHO, 2017). Therefore, it is crucial to find ways to fight against HIV and measles

and ensure that funds allocated to the fight against these diseases are used efficiently.

Maps are often used to spot out areas of a country with the most disease occur-

rences in order to plan for a proper intervention and targeted distribution of aid

to most affected areas. They are indeed regarded as useful tools for geographical

targeted interventions, monitoring and evaluation of disease burden. However, the

construction of such maps is fraught with a number of challenges. One of the set-

backs is that these maps are constructed using data that may contain errors. Also,

these maps may inherit the problems due to biased selection methods and the sparse

nature of data collected from small geographical areas or ecological fallacy.

For instance, in Namibia, as in many countries, HIV statistics from prevention of

mother to child transmission (PMTCT), antenatal clinics and syphilis surveillance,

and antiretroviral treatment programs are available at site or health district levels.

The availability of many sources of HIV data provides an opportunity to use a combi-

nation of data sources in order to provide more precise estimates and hence produce

maps with high resolution. However, the combination of different data sources has

its own challenge as data may be spatio-temporally misaligned. Many scholars have

almost exclusively opted for modelling data from different sources separately with

antenatal care (ANC) clinics considered as the best possible source information on

HIV.

In many physical phenomena that include those in epidemiological, ecological and

environmental studies, it is common to encounter situations of having data aggre-

gated at one level but the problem of interest requires making decision at a different
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level of aggregation. In particular, for disease surveillance, disease data are com-

monly available in aggregated format in order to preserve the privacy of patients. In

Namibia, measles data were available in aggregated format at regional level over the

period 2005 to 2014. Yet, health decisions might be needed at lower administrative

boundaries such as constituency level. If direct inferences at constituency level are

made on the basis of the regional data, then such inferences may suffer from the

problem known as misalignment (Finley, Banerjee, & Cook, 2014). Although many

methods of dealing with this type of misalignment are found in literature, most of

them rely on the availability of covariates at both levels of aggregation. In addi-

tion to the misalignment issue, socio-economic variables related to measles were not

measured for each year, rather surrogate variables were used instead. Assuming no

measurement errors in these covariates would introduce bias in estimates and con-

sequently lead to erroneous conclusions (Wattanasaruch et al., 2012; Buonaccorsi,

2010). Despite rich literature on measurement error modelling, many researchers

still use näıve modelling approach that assumes that covariates are observed with-

out errors.

Therefore, the purpose of this study was to use measles data and a combination

of data obtained from different sources while adjusting for measurement errors in

order to derive reliable small area estimates of measles and HIV risk that would

enable the government and various policy and decision makers to deal with issues of

the distribution of funds and resources, equity, disparity, intervention and surveil-

lance programs. Ultimately, high resolution maps of diseases risks in Namibia were

constructed.
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1.3.2 Statement of the research problem

In recent years, maps depicting geographical distributions of diseases at small ar-

eas have been used extensively in public health, mostly in the analysis of disease

risk distribution. An understanding of the magnitude and spatial and/or temporal

distribution of disease risks is essential for planning, evaluating and re-designing pre-

vention and control strategies, and other important policy decisions particularly for

geographical target interventions in resource poor settings. In modeling the spatial

distribution of disease burden, it is assumed that the analysis is based on best possi-

ble data. However, for instance HIV data are fraught with challenges; including lack

of representative samples, mostly depending on sentinel data, often incomplete data

and most of which may have measurement errors such as misclassification due to

self-reporting, inaccurate measuring instruments, poor data coding and recording,

and poor data management. Additionally, combining data from two sources, namely

the 2014 National HIV Sentinel survey (NHSS) and the 2013 Namibia Demographic

and Health Surveys (NDHS), would pose a misalignment as these two surveys are

conducted at different levels of aggregation. For measles, health policy makers might

be interested at inferring at lower level (i.e. constituency level), yet data is available

at regional. Direct inferences at constituency level using data originally collected

at regional level might be troubled by misalignment. Also, the use of surrogates

of socio-economic variables related to measles in näıve models would induce bias in

estimates as results of errors in covariates. All these problems pose a complex mod-

eling challenge when analysing the risk of HIV as well as measles at small areas in

many African countries, including Namibia. Nevertheless, an effective fight against

HIV epidemic and measles requires the use of maps constructed with reliable risk

estimates which constitute an alternative approach for monitoring and evaluation.

To the best of our knowledge, detailed spatial analyses of HIV and measles data

have not been done in Namibia. The few existing studies mainly focused on the

analysis of prognostic variables of HIV and many other reports on HIV, which only

provided the summary statistics of HIV prevalence at site or district level. Whereas

almost non-existent studies on measles in Namibia are found in literature. In or-

der to achieve an accurate estimation of measles and the HIV burden, this study

intended to develop models for statistical analysis of spatially misaligned measles
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data and HIV data obtained from different sources fraught with selection bias and

possible non-sampling errors for more robust maps of diseases burden in Namibia.

1.4 Objectives

1.4.1 Main objective

The main aim of this study is to develop models for disease mapping for spatial

misaligned measles data while adjusting for measurement errors and while using

multiple sources such as the national HIV sentinel surveillance (NHSS) and the

Namibia demographic and health survey (NDHS) HIV data. In other words, the

dissertation focuses in spatial and spatio-temporal methods that can help deal with

misalignment and measurement errors in data, and model jointly data from two

different sources.

1.4.2 Specific objectives

The specific objectives are to:

• fit models for misaligned data with application to map the risk of measles at

sub-region level (i.e. constituency level) using data obtained at the regional

level in Namibia;

• fit models for misaligned data fraught with measurements errors with applica-

tion to map the spatio-temporal risk of measles at the sub-regional level (i.e.

constituency level) using data obtained at the regional level in Namibia for

the period 2005-2014; and

• develop joint models for national HIV sentinel surveillance (NHSS) and Namibia

demographic and health survey (NDHS) HIV data.
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1.5 Significance of the study

The multi-step modelling approach developed in this study would enable the use

of regional aggregated data to build models that are useful for constituency level

inferences. Also, this study is significant to Namibia as the health care providers and

health policy makers would be in position of using the diseases’ maps to efficiently

deliver much needed care services across the country through identification of groups

of people and or areas in needs. Furthermore, the study used a bivariate modelling

approach that helped in dealing with spatially misaligned data and enhanced the

prediction of HIV prevalence by jointly modelling DHS data source with other HIV

data such as NHSS data.

1.6 Delimitations

With measles data, the period of 2001−2004 was excluded from the study period as

the available information for this period was inconsistent throughout the country.

Although the administrative boundaries have changed over time, this study had

used the 2011 administrative boundaries (old boundaries) because they match with

variables obtained from 2011 Namibia population and housing census.

1.7 Dissertation outline

Chapter 1 presented the overview, the conceptual framework, the background to

spatial modelling, the orientation of the study, the statement of the research prob-

lem; and research objectives. In chapter 2, we begin with a short review of the basic

Bayesian modelling. Different prior distributions as well as estimation methods,

which include the classes of Markov Chain Monte Carlo (MCMC) and Integrated

nested Laplace approximation (INLA) methods, are discussed. Furthermore, this

chapter provides a review of spatial and spatio-temporal modelling approaches that

have been applied for disease mapping. In addition, some current issues in spatial

and spatio-temporal modelling are reviewed. The goal of this chapter is then to pro-

vide the reader with some general understanding of spatio-temporal modelling and

lay some ground to the concepts and statistical methods used in disease mapping
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that can help the development of the subsequent chapters.

Chapter 3 discusses the problem of misalignment in data and it focuses on esti-

mating and mapping the risk of measles at sub-regional level using data obtained at

regional level in Namibia. To deal with misalignment in measles data from Namibia

for the period 2005-2014, we proposed a multi-step approach to correct the mis-

alignment.

Chapter 4 is devoted to spatio-temporal models involving Bernardinelli and Knorr-

Held spatio-temporal models commonly used in space-time modelling. The multi-

step approach was extended to spatio-temporal in order to account for temporal

effects. Additionally, instead of the restrictive assumption that covariates remained

constant over time, classical measurement error models in covariates were introduced

to improve the spatio-temporal ecological regression model.

Chapter 5 provides the reviews of methods commonly used in multivariate disease

mapping. Shared component models were adopted to fit bivariate models, using

stochastic partial differential equations (SPDE) that help dealing with edge effects,

for NDHS and NHSS surveys.

Chapter 6 revisits the primary objectives in order to evaluate if they have been

achieved and it presents conclusions and recommendations for improvements and

future studies. After Chapter 6, an appendix that includes all R-programmes used

in this dissertation is provided. A biography of all references is given at the end of

dissertation.
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Chapter 2

Approaches to spatio-temporal

analysis and disease mapping

2.1 Generalised linear models

2.1.1 Introdution

Linear regression model requires that the response variable must be continuous and

normally distributed (Scott, 2007). However, in some research fields such as social

science, continuous outcome variables are rare (Lindsey, 2001). Quite often, di-

chotomous, ordinal, or nominal outcomes are available (Gill, 2001). In these cases,

the linear regression model becomes inappropriate due to several reasons that in-

clude heteroscedasticity and non-normal errors encountered in outcomes that are

not continuous (Scott, 2007). The generalised linear modeling is a framework which

provides a way to handle these problems. It provides a collection of models which

relax the normality assumption of error terms to accommodate a wide range of er-

ror term distributions. Generalised linear models consist of three main components,

namely: random, systematic, and link function (Waller & Gotway, 2004).

The random component consists of independent outcomes, denoted by Yi for i =

1, . . . , n, from a distribution within the exponential family. This implies that the

probability density or mass function of Yi may be expressed in the form

f(yi, φi) = exp (a(φi) + b(yi) + c(yi)Q(φi)) , (2.1)
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where a(·), b(·), c(·), and Q(·) represent arbitrary functions of distributional pa-

rameters (φi) and observed values ( yi). If c(yi) = yi, the distribution is said to be

in canonical form (i.e. standard form) (Dobson, 2002). In case of a vector of yis

independent values from the exponential family, then Eq. (2.1) can be generalised

as follows (in canonical form).

f(y1, . . . , yn, φ1, . . . , φ1) = exp

(
n∑
i=1

a(φi) +
n∑
i=1

b(yi) +
n∑
i=1

yiQ(φi)

)
(2.2)

The systematic component of a generalised linear model is given by Xβ, where

X is the design matrix, each row listing the values of covariates observed corre-

sponding to the observation of the outcome yi, and β is the vector of parameters.

The link function h(·) provides a functional connection between the systematic com-

ponent Xβ and the expected value of Y = (Y1, . . . , Yn). That is

h[E(Y )] = Xβ (2.3)

For members of the exponential family, the mean, E(Y ), is often among the dis-

tributional parameters φ and hence Q(φi) is often a function of E(yi) (Waller &

Gotway, 2004). Table 2.1, adapted from (McCullagh & Nelder, 1989; Scott, 2007),

provides some examples of standard models and their corresponding link functions.

2.1.2 Logistic and Poisson regression

Logistic and Poisson regression models have a number of applications in many fields

such as epidemiology, social science, and disease mapping (Samaniego, 2010). These

two families of generalized linear models are core to the work covered in this disser-

tation. Therefore, a review of these models in the subsequent sections is presented.

Their parameters’ estimation and model extension to spatial model follow the the

frequentist and Bayesian spatial modeling framework as pointed out in the litera-

ture.
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Table 2.1: Some examples of generalized linear models and corresponding link func-
tions

Model link function h(µi)

Linear (Normal) µi (identity)
Logistic log[ µi

1−µi ] (logit)

Binomial log[ µi
1−µi ] (logit)

Poisson log(µi) (log)
Probit Φ−1(µ) (inverse of the cumulative stadard normal)
log-log −log(−log(µi) (log-log)
Complementary log-log log(−log(1− µi)) (c-log log)
Gamma 1

µi
Inverse Gaussian 1

µ2i
(Quadratic inverse:reciprocal2)

Negative binomial log(1− µ) (log)

Logistic regression

Suppose that yi is a binary outcome, where yi = 1 indicates the presence of the

disease of interest in individual i and yi = o denotes its absence. Let µ denote the

unknown probability of disease prevalence in the population under study. The ran-

dom variable Yi follows a Bernoulli distribution with probability of disease µ. The

likelihood function associated with the observations y1, . . . , yn is given by

f (y1, . . . , yn, µ) = Πn
i µ

yi (1− µ)1−yi . (2.4)

The Eq. (2.4) can be rewritten as

f (y1, . . . , yn, µ) = exp

[
n∑
i=1

log (1− µ) +
n∑
i=1

yilog

(
µ

1− µ

)]
(2.5)

It can be noted that Eq. (2.5) is a member of an exponential family in canonical

form with φi = µ, a(φi) = log(1− µ),b(yi) = 0, c(yi) = yi), and Q(φi) = log
(

µ
1−µ

)
.

Since E(Yi = µ), the canonical link is h(E(Yi) = h(µ) = log
(

µ
1−µ

)
which is a logit

link.
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Poisson regression

The Poisson regression is commonly used as an approximation to the binomial distri-

bution in modeling count data of rare diseases (Roussas, 1997; Dobson, 2002). It is

also often used to model observed point locations as random events. Suppose that we

observe location counts y1, . . . , yI that are independently and identically distributed

Poisson random variables with mean and variance equal to V ar(Yi) = E(Yi = µ).

The joint probability associated with the observed data y1, . . . , yI is

f (y1, . . . , yI , µ) = ΠI
i

µyie−µ

yi!
, (2.6)

which can be rewritten as

f(y1, . . . , yI , µ) = exp

(
I∑
i=1

yilog(µ)− Iµ−
I∑
i=1

log(yi!)

)
(2.7)

The Poisson distribution is a member of an exponential family in canonical form

with φi = µ, a(φi) = Iµ,b(yi) = 0, c(yi) = yi, and Q(φi) = log(µ). Since E(Yi = µ),

the canonical link is h(E(Yi) = h(µ) = log(µ), which is a log link.

The estimation of parameters of generalised linear models is discussed in subsequent

sections (i.e. frequentist and Bayesian approaches to estimation). It is worthwhile

to mention that more attention was given to the Bayesian modelling approach as it

forms the core of this research.

2.2 Frequentist modelling approach

2.2.1 Introduction

Under the frequentist modelling approach, data are often assumed to be a random

sample of independently identically distributed ( i.i.d) variables, it is argued that

the i.i.d. assumption is logically shaky even though making this assumption may be

relatively harmless (DeGroot, 1970). With this approach, model fits are often judged

on the basis of their theoretical average performance. For example, estimators are

compared on the basis of their mean squared root errors (MSEs). This means the
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comparison is based essentially on the on the squared error in many identical trials

of an experiment. These averages might be inappropriate for assessing the merits of

statistical procedures as identical repetitions of an experiment might be impossible

(Samaniego, 2010). In addition to this, comparing the fit of non-nested models,

such as a nonlinear model and its linearised version, may result in problems (Bol-

stad, 2004).

Generally, two methods are commonly used when dealing with estimation of pa-

rameters, namely: (i) optimizing relative to a risk-based criterion for a fixed sample

size n and (ii) optimizing relative to some asymptotic measure of performance (as

n→∞). Data with complex structures such hierarchical nesting of subjects, crossed

classifications, spatially indexed data, or repeated measures on subjects present chal-

lenges (Congdon, 2010).

When sufficient data are available, the generalized least squares (GLS) method may

be employed as it relaxes the assumptions of independent and constant errors by

allowing autocorrelation and heteroscedasticity in residuals (Davidian & Giltinan,

1995).

In case of non-linear data, the GLS method becomes inapplicable. Two classes of

iterative approximation methods, which involve the linearisation of non-linear mod-

els, are recommended. The first method is a first order linear approximation and it

draws inferences from the joint maximum likelihood and generalised least squares

methods. The second is a conditional first-order linear approximation seen as a

refined version of the first order linear approximation (Davidian & Giltinan, 1995).

The convergence of these methods depends on a number of factors that include start-

ing values, overparameterisation, and the presence of parameters that may prevent

the model to have a behavior of a close linear form (Davidian & Giltinan, 1995;

Ratkowsky, 1990).

A good estimation method should ensure that an estimator satisfies, among others,

the following properties: unbiasednes, effeciency, sufficiency, completeness, mini-

mum variance, and best linear, and robustness (Wackerly et al., 2002). This section

briefly reviews unbiasednes, sufficiency, completeness, and minimum variance. De-

tails on the other properties can be found elsewhere (e.g. Samaniego (2010)).
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2.2.2 Unbiasedness, sufficiency, and completeness of an es-

timator

Before the search of best estimators begins, the condition of unbiasedness for esti-

mators should be met.

An estimator θ̂ is said to be unbiased of a parameter θ if

E(θ̂) = θ (2.8)

A parameter θ may have more than one competing unbiased estimators. The selec-

tion of an optimal estimator is achieved through the examination of sufficiency and

completeness properties.

A statistic U = g(y1, . . . , yn) is a sufficient estimator of θ if the conditional distri-

bution of the data y1, . . . , yn, given U , does not depend on θ. Stated differently,

a statistic U = g(y1, . . . , yn) is sufficient for estimation of unknown θ if and if the

likelihood L (y1, . . . , yn | θ) can be factorised in two non-negative functions as follows

(Wackerly et al., 2002).

L (y1, . . . , yn | θ) = k (U, θ)× h (y1, . . . , yn) , (2.9)

where k(·) is a function of U and θ, and h (·) is a function of the data only.

A sufficient statistic U = g(y1, . . . , yn) is said to be complete for the parameter

θ if the equation Eθ(t(U)) = 0 holds for a given function t, then t(U) = 0 with prob-

ability one (Roussas, 1997; Samaniego, 2010). This means that the completeness

property ensures that there is only one function of the sufficient statistic U that is

unbiased for θ.

2.2.3 Minimum variance unbiased estimators (MVUEs)

The estimator with the smaller variance is preferred as its average squared distance

from the target parameter θ would be smaller than that of the other estimators. Gen-

erally, the estimation procedure would seek an estimator with the smallest possible

variance. Two theoretical results that are commonly used in search of a minimum

variance unbiased estimator, namely: Crao-Blackwell and Cramér-Rao theorems,

are presented below (Samaniego, 2010).
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Crao-Blackwell theorem:

Suppose that Y1, . . . , Yn are identically and independently distributed random vari-

ables, and that U , a function of Y1, . . . , Yn, is a sufficient statistic for θ. Let

S = S(Y1, . . . , Yn) be unbiased estimator of θ, and define θ̂ = θ̂(U) = Eθ(S | U).

Then the estimator θ̂ is unbiased for θ, and

V arθ(θ̂) ≤ V arθ(S), ∀θ ∈ Θ (2.10)

This indicates that, while searching for good unbiased estimators in a given problem,

one does not have to look beyond those that are functions of the sufficient statistic

U , as any other unbiased estimator may be replaced by an unbiased estimator which

is a function of U .

Cramér-Rao inequality:

Cramér-Rao theorem is expressed as an inequality and it provides a lower bound

on the variance of unbiased estimators for a given problem. It holds under a set

of conditions generally referred to as regularity conditions. Firstly, the support of

the model is an open interval of real numbers which is independent of θ. Secondly,

one may pass derivatives under integral signs as needed, provided the expectations

exist. This is expressed mathematically as

∂

∂θ

∫
s(x)f(x, θ)dx =

∫
s(x)

∂

∂θ
f(x, θ)dx, (2.11)

where s(x) is any integrable function. The Cramér-Rao theorem relates the variance

of the estimator to Fisher Information (Wackerly et al., 2002) . The Fisher IX(θ),

which reflects the information content about θ in a single observation x, is defined

as

IX(θ) = E

[(
∂

∂θ
lnf(X, θ)

)2
]

(2.12)

Now the Cramér-Rao theorem is as follows

Suppose that X1, . . . , Xn are independently and identically distributed, a probability

distribution with density or probability mass function f(x, θ) for all θ in some open

interval of real numbers.
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Furthermore, let θ̂ be an unbiased estimator of θ based on X1, . . . , Xn. Then

V ar(θ̂) ≥ 1

nIX(θ)
(2.13)

2.3 Spatial modelling

2.3.1 Introduction

Spatial data are any form of data attached to geographical locations. In statistical

literature, there are three main forms of spatial data, namely, areal data, point-

referenced data, and point pattern data. Modelling such data can be considered

from a hierarchical perspective, where the random effects are introduced to account

for spatial dependence unexplained by the observed data. Modelling in the Bayesian

framework is commonly preferred over the non-Bayesian approach that assumes

parameters to be fixed but unknown, whereas the former considers all parameters to

be stochastic. Hence, each parameter is assigned with a probability function known

as a prior function. Likelihood models and prior functions are the most important

parts of Bayesian inference. The likelihood function describes the dependence of a

set of parameters on sample values and it is believed to portray in its totality the

information contained in a data set, while the latter provides extra information about

parameters through beliefs or assumptions as they are assigned before seeing data

(Lawson, 2013). The conventional likelihood model formulation assumes that data

are conditionally independent. This assumption allows formulating the likelihood

function as a product of individual contributions of each observation yi as follows.

Let yi, for i=1, . . . , n, be a sample of observed values. Then the likelihood of yi is

defined by

L(yi|θ) =
n∏
i=1

f(yi|θ), (2.14)

where θ is a vector of parameters and f(· | ·) is a probability density function or a

probability mass function.

Clearly, in a spatial context where spatial units are expected to obey Tobler’s law of

geography, the assumption of the conditional independence of data is violated. Lo-

cations that are nearby each other have very similar values relative to those located
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far from one another. This implies that, within spatial analysis, spatial correlation

is crucial and must be catered for during analysis. It is accounted for in the prior

probability distribution level, but not in the likelihood function.

2.3.2 Prior distributions

An important phase in Bayesian modelling is to choose prior distribution for pa-

rameters (Scott, 2007). When there is little information available, it is desirable to

choose a prior distribution that does not dominate the likelihood function and such

prior distributions are assumed not to have a strong influence and they are known

as noninformative, or vague or reference or flat prior distributions (Lawson, 2013).

Prior distributions based on the Fisher information matrix, known as Jeffrey’s priors

were developed in order to meet the criterion of noninformativeness. The literature

also suggests that the choice of flat prior distributions can be guided by the un-

derstanding of the general behaviour of the variable of interest on its range. For

instance, gamma, inverse gamma or uniform are quite often used as noninformative

priors for variance parameters as such parameters are expected to be on a positive

side of the real number line. Whilst, for parameters expected to be on either side

of zero of a real number line, prior distribution with mean zero and large variance,

Laplace distribution are natural choices. Other important criteria considered when

choosing priors are impropriety and conjugacy (Bolstad, 2004; Scott, 2007). The

former criterion is defined as prior distribution, which when its integral is evalu-

ated over its range is not finite. This may result in an improper posterior. The

latter criterion can be defined as a combination of prior distributions and likelihood

functions that yield posterior distributions which are in the same distribution fam-

ily with their prior distributions. This property ensures that the integration of a

posterior distribution over its range is finite and hence analytical methods can be

used for the evaluation of such a posterior distribution. A brief discussion of some

commonly used conjugate priors are provided below.
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Beta and uniform priors

Let θ provided in Eq. (2.14) be a random variable representing a proportion. A

convenient class of density functions for θ is a beta density function defined by

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, (2.15)

where α and β represent the number of prior successes and failures, respectively;

Γ[·] is a gamma function.

The choice of the parameters α and β depends on the amount of available in-

formation and the magnitude of weight the available information should carry in

the posterior inference (Scott, 2007). That is, α and β will assume large values if

large prior information is available and it is judged to be very important relative to

current data. In case there is no sound reason as to why much importance should

be put into the prior information, then α and β are given moderate values. If very

non-significant prior information is available or a researcher wishes to assign very

little weight to prior information, then small values are given to the parameters.

The commonly used small value is α = β = 1. In this case, it can be easily shown

that Eq. (2.15) simplifies to

p(θ) = 1, 0 ≤ θ ≤ 1, (2.16)

which is a uniform prior distribution. Both beta and uniform distribution are prior

conjugates of a binomial distribution.
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Gamma and inverse gamma priors

For count data, a Poisson probability mass function is commonly used. In this

case, the objective is to assign a prior distribution to rate parameter θ. A gamma

distribution, which is a conjugate prior for Poisson distribution, is a natural choice

for θ and it is expressed as follows

p(θ) =
βα

Γ(α)
θα−1e−βθ, (2.17)

where α and β are shape and scale parameters, respectively.

An inverse gamma distribution for variable φ, provided that 1
φ

follows a gamma

distribution, is given by

p(φ) =
βα

Γ(α)
φ−(α+1)e−

β
φ ;φ, β, α > 0 (2.18)

Gamma and inverse gamma are generally used as conjugate priors for the precision

parameter ( 1
σ2 ) and variance (σ2), respectively, in normal distribution.

Dirichlet prior distribution

A Dirichlet distribution is a multivariate extension of beta distribution. If θ is

a vector of r dimension and θ follows Dirichlet (α1,. . .,αr), then

p(θ) =
Γ(α1 + . . .+ αr)

Γ(α1) . . .Γ(αr)
θα1−1

1 . . . θαr−1
r , (2.19)

where α1,. . .,αr represent prior totals of outcomes in each of the r outcome categories.

Since the multinomial distribution is a generalisation of a binomial distribution and

a beta distribution is a conjugate prior for a binomial distribution, consequently the

Dirichlet distribution is a conjugate prior for a multinomial distribution.
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Wishart and inverse wishart priors

If parameter φ ∼ Wishart (S), then

p(φ) ∝ |φ|
(ν−d−1)

2 exp(−1

2
tr(S−1φ)) (2.20)

Also, if parameter φ ∼ inverseWishart (S), then

p(φ) ∝ |φ|−
(ν+d+1)

2 exp(−1

2
tr(Sφ−1)) (2.21)

S is a d dimension scale matrix and ν is the number of degrees of freedom; S and

φ are assumed to be positive definite (i.e. zTSz > 0 and zTφz > 0, for a non-zero z

vector of dimension d). Wishart and inverse Wishart are generalisations of gamma

and inverse gamma in multivariate normal distribution. Consequently, the inverse

Wishart is a conjugate prior for variance-covariance matrix in multivariate distribu-

tion.

Normal prior

If X ∼ Normal(µ, σ2), then µ is usually assigned a normal flat prior (i.e µ ∼
N(0, σ2

µ)) and σ2 ∼ IG(α, β). In case of multivariate normal distribution, a mul-

tivariate normal prior and inverse Wishart prior are used for the vector of means µ

and the variance covariance matrix, respectively.

2.3.3 Posterior distribution

Recall that in Bayesian analysis, both parameters θ and data y are random vari-

ables. Let f(θ, y) be the joint distribution of θ and y. Then f(θ, y) can be rewritten

as f(θ, y)= f(y | θ)p(θ), where p(θ) is the prior distribution of θ and f(y | θ)=L(θ)

is the likelihood function. Also, it can be shown that f(θ, y)=p(θ | y )f(y),where

p(θ | y ) is the conditional distribution of θ given the observed data y and f(y)

is a marginal distribution y. Thus, f(y) can be derived from the joint as follows

f(y)=
∫
f(y | θ)p(θ)dθ.
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Now by making p(θ | y ) the subject of the formula from the joint distribution,

it follows that

p(θ|y) =
f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ

=
L(θ)p(θ)∫
L(θ)p(θ)dθ

(2.22)

It can be noticed that the posterior distribution derived in Eq. (2.22) is proportional

to the product of the likelihood and the prior distribution where
∫
f(y | θ)p(θ)dθ

is the constant of proportionality. Therefore, the posterior distribution of θ can be

expressed differently as

p(θ|y) ∝ L(θ)p(θ) (2.23)

Table 2.2 provides a summary of priors, likelihoods and their conjugate posteriors.
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ȳ
+
β
−

1

D
ir

:π
(θ

)
=

Γ
(α

1
+
..
.+
α
r
)

Γ
(α

1
).
..

Γ
(α
r
)
θα

1
−

1
1

..
.θ
α
r
−

1
r

M
u
l:
f

(Y
|θ

)
=

y
!

∏ r i=
1
y
i=

1
!

∏ r i=
1
be
ta
y
i

i
π

(θ
|Y

)
∝
∏ r i=

1
θα

i
+
y
i
−

1
i

N
-G

:
π

(µ
,σ
−

2
)

=
N

(µ
0
,c
σ
−

2
)G

(α
,β

)
N

:f
(Y
|µ
,σ

2
=

(2
π
σ

2
)−

n 2
ex
p{
−

1
2
σ
2

∑ n i=
1
(y
i
−
µ

)2
}

π
(µ
,σ
−

2
|Y

)
∝
σ
−

(n
+

1
)+
α
−

1
×

ex
p{
−
σ
2 2
(1

+
n
c

c
)(
µ
−

µ
0
+
n
cȳ
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2.3.4 Estimation methods

After a posterior distribution has been obtained, the next step is to derive summary

measures of interest from the posterior distribution. For relatively simple posterior

distributions, two methods of sampling, namely inversion and rejection sampling

methods, can be used to obtain samples. The first method is executed in two main

steps. In the first step, a random variable u is drawn from U(0, 1). Then, in the

second step draw z=F−1 (u) from the posterior distribution. The second method

is implemented in three basic steps: firstly, draw a value z from any easy envelop

distribution of the posterior distribution; secondly, compute the ratio of the envelop

distribution evaluated at the value obtained in step 1 to the posterior distribution

evaluated at the same value; lastly, draw a random variable u from U(0,1) and

accept z if the ratio is greater than u. In most cases, it is not straight forward to

obtain summary measures through these methods or direct maximisation or analyti-

cal means of the posterior distribution (Scott, 2007; Lawson, 2013). The complexity

of the posterior distribution of parameters that results from hierarchical levels of

models requires the use of advanced sampling algorithms. These algorithms enable

to derive samples from the posterior distributions, which in turn are summarized

to produce the parameter estimates of interest. Two major classes, namely Markov

Chain Monte Carlo (MCMC) and Integrated Nested Laplace Approximation meth-

ods are reviewed in the subsequent sections.

2.3.4.1 Markov Chain Monte Carlo Methods (MCMC)

Markov Chain Monte Carlo Methods is a collection of iterative simulation methods.

These methods include Metropolis-Hastings, Gibbs sampler, hit-and-run sampler,

shake-and-bake algorithm, Metropolis-Gibbs hybrids and the multiple-try Metropolis-

Hastings method, auxiliary variable samplers (e.g. the slice sampler and the Swendsen-

Wang algorithm), and reversible-jump sampler (Kroese et al., 2011). They involve

the process of sampling a new value from the posterior distribution, given the avail-

ability of previous values through the random simulation process. For the past two

decades, Markov Chain Monte Carlo (MCMC) methods that include the Gibbs sam-

pler and the Metropolis-Hastings algorithm have become popular methods to sample

from complex or intractable posterior distributions. Their popularity is due to the
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fact that they can sample from uni or multi dimensional posterior distributions and

navigate through the whole support of the posterior distribution. However, the

success of MCMC methods depends on the choice of a good proposal distribution,

which allows reasonably quick movement across the support of the posterior. In

subsequent paragraphs, we briefly review Gibbs sampler and Metropolis-Hastings

algorithm. More details on these methods can be found elsewhere (e.g. Robert &

Casella (2011); Kroese, Taimre, & Zadravko (2011); Scott (2007); Tierney (1994)).

Metropolis-Hastings (MH) algorithm

In MH algorithm, samples are produced from a probability distribution using the

full joint density function. One distinct advantage of MH algorithm relative to

other sampling methods is that it works with multivariate distributions and it does

not require an envelop function. An MH algorithm consists of the iteration of the

following four steps:

1. Choose starting values for the vector of parameters θ, say φ .

A careful selection of starting values is encouraged as poor starting values

may cause the algorithm not to move fast towards the main support of the

posterior.

2. Choose a proposal density α[·] from which a candidate value for the parameter

θc will be simulated.

Although asymmetric proposal densities still work, it is recommended to choose

symmetric proposal densities.

3. Compute the ratio R= p(θc)α(θj−1|θc)
p(θj−1)α(θc|θj−1)

.

If an asymmetric proposal density is employed, some candidate values may

be selected more often than others. To deal with this problem, a correction

measure is introduced in the ratio expression (i.e. the ratio of the proposal

densities evaluated at the candidate and previous points. That is α(θj−1|θc)
α(θc|θj−1)

).

4. Draw a random variable u from U(0, 1) and compare it with the R to determine

whether the candidate value is from the target distribution or not.

If R > u, then the candidate is accepted as a draw from the posterior density
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p(·). Otherwise, the previous parameter value is retained. That is if R > u,

then set θj= θc. Otherwise, set θj= θj−1

Gibbs sampler

Gibbs sampler is a particular case of the Metropolis-Hastings algorithm. It is suit-

able when the MH algorithm fails to sample from a high dimensional posterior

distribution. The Gibbs sampler algorithm breaks the complex posterior into a se-

ries of simple conditional distributions from which it is feasible to sample (Robert

& Casella, 2010). The description of a basic multistage Gibbs sampler is given be-

low. Suppose that, for some k > 1, θ is a vector of random variables which can be

written as θ=(θ1,. . .,θk). Further, assume that it is possible to simulate from the

corresponding conditional densities p1,. . . ,pk.

In other words, θi | θ1,. . .,θi−1,θi+1,. . .,θk ∼ pi(θi | θ1,. . .,θi−1,θi+1,. . .,θk), for i=1,. . .,k

1. Assign a vector of staring values, φ, to the parameter vector (i.e. φ=θj=0)

2. Set j=j+1 , j is the iteration counter

3. Simulate θ
(j)
1 | θ

j−1
2 ,. . .,θj−1

k ∼ p1(θ
(j)
1 | θ

j−1
2 ,. . .,θj−1

k )

4. Simulate θ
(j)
2 | θ

j
1,θj−1

3 ,. . .,θj−1
k ∼ p2(θ

(j)
2 | θ

j
1,θj−1

3 ,. . .,θj−1
k )

...

5. Simulate θ
(j)
k | θ

j
1,θj,. . .,θjk−1 ∼ p2(θ

(j)
k | θ

j
1,θj,. . .,θjk−1)

6. Return to step 2 to start a new loop

An iteration of the Gibbs sampler is a loop through these steps and every loop gives

rise to a new sampled value of a parameter called an updated value.
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2.3.4.2 Integrated Nested Laplace Approximation (INLA)

Markov Chain Monte Carlo (MCMC) methods described in the section above are

simulation-based methods used for Bayesian computation. Although MCMC meth-

ods are tremendously flexible and capable to deal with almost any type of data

and model, these methods are computationally expensive to obtain the posterior

distribution for the parameters (Blangiardo, Cameletti, Baio, & Rue, 2013). Conse-

quently, Integrated Nested Laplace Approximation, which is an analytic approxima-

tion based on the Laplace method, has been recently developed as an alternative to

MCMC. In the subsequent section, we provide a description of the Laplace approxi-

mation method and describe the INLA algorithm. In depth details can be obtained

in Blangiardo et al. (2013); Blangiardo & Cameletti (2015).

Laplace analytic approximation method

Let p(θ) be a posterior distribution of a random variable of parameters θ. The

main purpose of a Bayesian inference is to evaluate the integral:∫
p(θ)dθ =

∫
exp(logp(θ))dθ (2.24)

Applying the Taylor expansion to log p(θ) and evaluating the expansion at θ =θ0,

it follows that

logp(θ) ≈ log(p(θ0)) + (θ − θ0)
∂log(p(θ))

∂θ
|θ=θ0 +

(θ − θ0)2

2

∂2log(p(θ))

∂θ2
|θ=θ0 (2.25)

It can be shown that ∂log(p(θ))
∂θ

|θ=θ∗= 0,where θ∗=mode.

Thus, Eq. (2.25) simplifies to

log(p(θ)) ≈ log(p(θ∗)) +
(θ − θ∗)2

2

∂2log(p(θ))

∂θ2
|θ=θ∗ (2.26)

Therefore, the integral of the posterior distribution (Eq. (2.24)) can be approxi-

mated as follows.∫
p(θ)dθ ≈

∫
exp(log(p(θ∗)) +

(θ − θ∗)2

2

∂2log((θ))

∂θ2
|θ=θ∗)dθ (2.27)

With little algebraic manipulation, it can be shown that∫
p(θ)dθ ≈ p(θ∗)×

∫
exp(

(θ − θ∗)2

2σ∗2
), whereσ∗2 = − 1

∂2log(p(θ))
∂θ2

|θ=θ∗
(2.28)
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It can be noted that exp( (θ−θ∗)2

2σ∗2 ) is associated with the desnsity of a normal distri-

bution with mean θ∗ and variance - 1
∂2log(p(θ))

∂θ2
|θ=θ∗

.

Therefore, the integral can be approximated using the cumulative distribution of

the normal distribution. Say, for example if one wishes to evaluate the posterior

distribution between two limits a and b, it can be achieved as follows

∫ b

a

p(θ)dθ ≈ p(θ∗)
√

2πσ∗2(Φ(b)− Φ(a)) (2.29)

INLA approximations of parameters and hyperparameters

Let y=(y1,. . .,yn) be a vector of observed values. Generally, the distribution of

yi is defined by the additive linear predictor ηi, which is defined as

ηi = h(φi) = α0 +
K∑
k=1

αkxki +
R∑
r=1

fr(zri), (2.30)

where h(·) is an appropriate link function, φi=E(yi), α=(α0, α1,. . ., αK) is a vector

of coefficients associated with the linear covariates x=(1, x1, . . . , xK), and f=(f1,

. . .,fR) is a vector of functions associated with the vector of covariates z=(z1,

. . .,zR). The function fi(·) may take various forms that include nonlinear effects,

random intercept and slopes, temporal and spatial random effects. Let θ=(α, f)

and Ψ=(Ψ1, . . . ,Ψm) be a vector of parameters and a vector of hyperparameters,

respectively. Then the likelihood of n-observed data points given θ and Ψ is given

by

p(y | θ,Ψ) =
n∏
i

p(yi | θi,Ψ) (2.31)

Assuming a multivariate normal on θ with a mean zero and a sparse precision matrix

Q(Ψ), then the posterior distribution of θ given Ψ is expressed as

p(θ | Ψ) = (2π)−
n
2 | Q(Ψ) |

1
2 exp(−1

2
θtQ(Ψ)θ) (2.32)

The joint posterior distribution of parameters and hyperparameters given the ob-

served data is given by

p(θ,Ψ | y) ∝ p(Ψ)| Q(Ψ) |
1
2 exp(−1

2
θtQ(Ψ)θ +

∑
log(p(yi | θi,Ψ)) (2.33)
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With Bayesian inference, the major objectives are the marginal posterior distribution

of elements of the parameter vector θ and elements of hyperparameter vector Ψ.

Mathematically, the objective is to evaluate

p(θi | y) =

∫
p(θ,Ψ | y)dΨ =

∫
p(θi | Ψ, y)p(Ψ | y)dΨ (2.34)

From the Eq. (2.34), it can be noted that p(Ψ | y) and p(θi | Ψ, y) are unknown and

hence have to be computed. The Laplace approximation is used to compute these

posterior distributions of the hyperparaters and parameters, respectively as follows.

First, computation of an approximation of p(Ψ | y):

Using Eq. (2.34), we obtain that

p(Ψ | y) =
p(θ,Ψ | y)

p(θ | Ψ, y)
(2.35)

Applying the law of conditional probability and law joint probability on the numer-

ator of the left hand side of Eq. (2.35), we obtain

p(Ψ | y) =
p(y | θ,Ψ)p(θ | Ψ)p(Ψ)

p(y)

1

p(θ | Ψ, y)
∝ p(y | θ,Ψ)p(θ | Ψ)p(Ψ)

p(θ | Ψ, y)
(2.36)

Substituting p(θ | Ψ, y) by its Laplace approximation, the Eq. (2.36) becomes

p(Ψ | y) ≈ p(y | θ,Ψ)p(θ | Ψ)p(Ψ)

p̃(θ | Ψ, y)
|θ=θ∗(Ψ)=: p̃(Ψ | y), (2.37)

where θ∗(Ψ) is the mode for some given value of Ψ.

Second, computation of a Laplace approximation to the posterior distribution of

each parameter (p(θi | Ψ, y)): Similar mathematical manipulations are also applied

to compute an approximation to the posterior distribution of each parameter and

the resulting approximation is

p(θi | Ψ, y) ≈ p(θ,Ψ | y)

p̃(θ−i | θi,Ψ, y)
|θ−i=θ∗−i(θi,Ψ)=: p̃(θi | Ψ, y), (2.38)

where p̃(θ−i | θi,Ψ, y) is the approximation of p(θ−i | θi,Ψ, y) through the Laplace

approach, and θ∗−i(θi,Ψ) is the mode.

Consequently, by substituting Eq. (2.37) and Eq. (2.38) into Eq. (2.34), the

marginal posterior distribution is approximated by

p̃(θi | y) ≈
∫
p̃(θi | Ψ, y)p̃(Ψ | y)dΨ. (2.39)
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Numerical methods (e.g. finite weighted sum) are used to evaluate the Eq. (2.38).

The interested reader may find more details on weighted sum methods elsewhere

(e.g. Blangiardo et al. (2013)).

2.3.5 Spatial modelling of areal or lattice data

2.3.5.1 Areal-lattice data and spatial proximity measures

Areal-lattice data

Data whose locations in space are known and are realisations of a stochastic process

indexed by space are called spatial data. That is Y (si) ≡ {y(si), si ∈ D}, where

si is an areal unit with well defined boundaries in a fixed d-demensional space D,

and y(si) is random aggregate value over si. If si is irregular (usually based on

administrative boundaries), then Y (si) are called area data. Otherwise, Y (si) are

lattice data. For simplicity in our notations, we replace the vector of areal units

s = (s1, s2, . . . , sn) by the vector of indexes of areal units (1, 2, . . . , n).

Spatial proximity measures

A spatial proximity measure quantifies the spatial dependence between areas i and

j in form of weights. It specifies the neighbourhood structure over an entire study

domain. When the weights (bij) are collected in matrix form, it originates a spatial

proximity matrix also known as a spatial connectivity matrix with the binary spatial

connectivity matrix being the commonly used. Below are some functions defining

the proximity weights (elements) of a binary spatial connectivity matrix (for more

details see for example Waller & Gotway (2004)).

bij =

{
1 if areas i and j share a boundary

0 otherwise
(2.40)

where bii = 0. Eq. (2.40) specifies the neighbourhood in terms of areas that are

adjacent. Other types of neighbourhoods based on idea of closeness, not necessarily
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on adjacency, can be defined as follows

bij =

{
1 if the centroid of area j is one of the q nearest to the centroid of area i

0 otherwise

(2.41)

In this case, the resulting spatial weights matrix is not necessarily symmetric as bij

may not necessarily equal to bji. The idea of q nearest neighbours can be modified by

defining the neighbours in relation with some parametric function of distance. This

concept is based on a pre-defining disk smoothing window centered at the centroid

of each area with an arbitrary radius δ.

bij =

{
1 if dij < δ

0 otherwise
(2.42)

where dij is the euclidean distance between the centroids of areas i and j. An inverse

power function of the distance dij can be used to yield the following elements of the

spatial proximity matrix.

bij =

{
d−αij if α >0

0 otherwise
(2.43)

A neighbourhood structure based on the length of the boundary shared by areas i

and j can be defined as

bij =

{
pij
pi

if areas i and j share a boundary

0 otherwise
(2.44)

where pij is the length of the boundary common to areas i and j, and pi is the

perimeter of area i.

Measures of spatial autocorrelation

In general, it is practical to assume that areas that are close in space show more

similarity than areas that are far apart. The measure of the strength of spatial

similarity between areas can be quantified using spatial autocorrelation. There are

many measures of spatial autocorrelation.
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• Moran’s I:

The Moran’s I statistic is algebraically expressed as

I =
1

S2

∑n
i=1

∑n
j=1 bij(yi − ȳ)(yj − ȳ)∑n
i=1

∑n
j=1 bij

, (2.45)

where the expected value of Moran’s I is given by E(I)=− 1
n−1

and S2 is the sample

variance of observed yi.

Moran’s I statistic is the most popular choice to measure the spatial autocorrelation

(Huo et al., 2011; Kamdem et al., 2012; Paireau, Girond, Collard, Mäınassara, &

Jusot, 2012). It is a valid measure of spatial dependence under the null hypothesis

that the related neighbours co-vary in no consistent way (i.e. randomness). It is

generally used to measure spatial autocorrelation of continuous data though it can

be used to analyse count data (Pfeiffer et al., 2008). Unlike the Pearson correlation

coefficient, Moran’s I statistic needs not to lie between -1 and 1 (Waller & Gotway,

2004; Banerjee, Carlin, & Gelfand, 2004). Its theoretical expression for the upper

bound can be found in Waller & Gotway (2004)). It can be used to determine the

strength of spatial dependence, distinguish between positive and negative spatial

autocorrelation, detect spatial clusters and spatial outliers, and test the significance

of the spatial correlation. High positive Moran’s I value indicates possible clusters,

low negative Moran’s I value indicates that high and low values are interspersed,

and a zero value of Moran’s I statistic indicates the non-existence of spatial auto-

correlation. It is worthy to note that, according to Waller & Gotway (2004), the

spatial structure in the population sizes can induce measurable positive spatial cor-

relation among the observed counts even if the constant risk hypothesis is met. For

the Moran’s I to reflect a true spatial pattern instead of a heterogeneous popula-

tion distribution, it is advisable to use areal incidence rates, instead of areal disease

counts (Waller & Gotway, 2004; Pfeiffer et al., 2008). Two types of this statistic are

distinguished: Global Moran’s I statistic and local Moran’s I statistic. The former

statistic is a useful measure of the overall clustering; whereas the latter statistic is

an important tool for detecting local spatial patterns.
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• Geary’s C:

The Geary’s C statistic is agebraically given by the form

C =
1

S2

∑n
i=1

∑n
j=1 bij(yi − yj)2∑n
i=1

∑n
j=1 bij

(2.46)

The Geary’s C is a spatial analogue of Durbin-Watson statistic and the variogram

for measuring the association in time series and in area of geostatistics, respectively

(Banerjee et al., 2004). It measures the similarity between pairs of areal units but

not similarity between neighbouring areas. C is always positive (0 ≤ C ≤ 2) and

asymptotically normal if the yis are identically and independently distributed (i.i.d).

Small values (i.e. 0 ≤ C ≤ 1) indicate positive spatial association whereas values

greater than one suggest negative spatial dependence.

2.3.5.2 Gaussian Markov Random Fields (GMRF)

Let θ be a vector of parameters of interest in the space D. Generally, θ is a Gaus-

sian random field if it is a Gaussian distributed random vector, which satisfies some

conditional independence properties. That is, for any pair (i,j) such that i 6= j, then

θi ⊥ θj | θ−{i,j}.
Let G=(ν, ε) represent a graph with ν ={1, . . . , n} a set of vertices,

and ε ={{i, j} : i, j ∈ ν} the set of edges in the graph; then for i, j ∈ ν the condi-

tional independence holds if the edge {i, j} /∈ ε, and does not hold otherwise.

Specifically, the definition of GMRF can be extended to reflect the condional in-

dependence properties which are in agreement with some specified G graph and a

symmetric and positive definite (SPD) precision matrix Q as follows.

A random vector of parameters θ=(θi, . . . , θn)T ∈ Rn is called a GMRF with respect

to labelled graph G=(ν,ε) with mean µ and SPD precion matrix Q, if its density

has the form

f(θ) = (2π)
1
2 |Q|

1
2 exp(−1

2
(θ−µ)TQ(θ−µ)), and Qi,j 6= 0⇐⇒ {i, j} ∈ ε,∀ i 6= j.

(2.47)

Further details on conditional independence properties and Markov properties of a

GMRF can be found in (Gelfand, Diggle, Fuentes, & Guttorp, 2010).
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The Bayesian framework that takes into account for spatial similarities based on

neighbourhood structure is used to model areal data. For an area i, its first order

neighbours N(i) are the areas that share borders with it.

Thus, structure matrix R can be defined as

R =


Ni if i = j

1 if i ∼ j

0 otherwise

where i ∼ j indicates that area i is a neighbour of area j. Let θ=(θi,θ−i) be a vector

of parameters of interest in the space D such that θi of the ith area is conditionally

independent of all other parameters given the set of its neighbors N(i)(i.e. θi ⊥ θ−i

| θN(i)). Then a sparse precision matrix Q of θ, which is a function of the structure

matrix R can be constructed in a way that for any pair of elements (i,j) in θ

θi ⊥ θj | θ−ij ⇐⇒ Qij = 0. This is a specification of a Gaussian Markov random

field (GMRF) (Blangiardo & Cameletti, 2015).

2.3.6 Spatial modelling of geostatistical data

Suppose that y(s), with s ∈ D ⊂ R2, is a variable, which is in theory defined at every

point over a bounded study region of interest (D) and has been observed at each

of n distinct points. Most of the times, the data are fragmentary and often sparse.

Therefore, the primary objectives of geostatistical modelling are to make inferences

about the process that governs the spatial distribution of the variable and about

values of the variable at unsampled locations. Geostatistical modellling has been

applied in many different fields, such as mining, agriculture, fisheries, hydrology,

geology, meteorology, petroleum, remote sensing, soil science and so on (Fischer &

Getis, 2010).
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2.3.6.1 Definitions

In this subsection, we begin by defining some of the key concepts that will be con-

sistently used.

Point-referenced data and Gaussian field

Let {y(s), s ∈ D ⊂ <2} be a random field characterised by a spatial index s which

varies continuously in the fixed study domain of two-dimensional space. Then the

point-referenced data represents a data set resulting from the random field. Though

these data naturally arise as realisations at a particular number of observation lo-

cations, theoretically they are assumed to be measured anywhere in study domain

(Bivand, Pebesma, & Gomez-Rubio, 2008).

A random field {y(s), s ∈ D ⊂ R2} is a Gaussian field if the vector of its realisa-

tions y(s)=(y(s1), . . . , y(sn)) at n locations (i.e. s1,. . .,sn ) is a multivariate normal

random variable with mean µ = (µ1, . . . , µn) and spatial covariance matrix Σ. Σij=

Cov(y(si), y(sj))=C(y(si), y(sj), where the covariance function C(·, ·) can assume

different forms.

Stationary and isotropic processes

A stochastic process is strictly stationary when it is invariant to translation within

d-dimensional space Rd, usually d = 2. That is, for any collection of n areal

units (s1,. . .,sn) and any separation (distance)vector h ∈ Rd, the distribution of

y(s)=(y(s1), . . . , y(sn)) is the same as the distribution of y(s+h)=(y(s1+h), . . . , y(sn+

h)). A process becomes weakly stationary or second order stationary if it has

a constant mean (µ(s) = µ) and the covariance is a function of only the dif-

ference between locations s and s + h but not on the locations themselves (i.e.

Cov(y(s),y(s+ h))=C(h) for all h and s, s+ h ∈ D).

An isotropic process is a process which is invariant to rotation about the origin.

In other words, the relationship between any two events is only a function of the

distance between the two events but not a function of the direction.
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Otherwise, if a random process is a function of both distance and direction, it is

called anisotropic.

Intrinsically stationary process, variogram and semivariogram

Let {y(s), s ∈ D ⊂ R2} be a random field. Then y(·) is said to be intrinsi-

cally stationary if E(y(s))= µ ∀ s ∈ D(i.e. the process has a constant mean)and

V ar{y(si) − y(sj)}=2γ(h) (i.e. variance depends only on the euclidean distance

between locations si and sj but not on the locations themselves). In the literature,

the functions 2γ(·) and γ(·) are referred to as variogram and semivariogram, re-

spectively. However, some scholars still refer to the plots of 2γ(·) and γ(·) versus

the spatial lag (h) as variogram and semivariogram, respectively. It can be easily

shown that the semivariogram is a function of covariance at spatial lag h (i.e. γ(h)=

C(0)− C(h))).

2.3.6.2 Estimation of covariance and semivariogram

Assume that y(s) is a random variable observed at a number of spatial locations

and whose characteristics are to be modelled within a given domain of study D (i.e.

regionalised random variable).

Covariance

Generally, the covariance between any two variables, say x and y, measures the

degree to which x co-varies with y. It is calculated as

C(x, y)= 1
n

∑
(xi − x̄)(yi − ȳ). In a similar way, the covariance between y(s) and

y(s+ h) can be computed as

C(y(s), y(s+ h)) =
1

n(h)

∑
(y(s)− ȳ(s))(y(s+ h)− ȳ(s+ h)), (2.48)

where n(h) is the number of paired comparisons at lag h. The covariance can be

computed for different lags of h and the plot of covariance as a function of lags(h)

is called an autocovariance diagram.
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Semivariogram

The degree of spread about a line is known as the moment of inertia and is cal-

culated as γ= 1
2n

∑
(xi − yi)2. Similarly, the moment of inertia about a support is

called semivariogram and it is expressed as

γ(h) =
1

2n(h)

∑
(y(s)− y(s+ h))2 (2.49)

This method of computing semivariances is often called the Matheron’s method of

moments (MoM) estimator. More details on this method and other methods of

estimating semivariograms can be found in Fischer & Getis (2010).

2.3.6.3 Estimation of spatial dependence

There exists a clear distinction between spatial variation of the risk and spatial clus-

tering (Bivand et al., 2008). Spatial variation is a phenomenon that occurs when

the risk is not homogeneous in the domain of study. This means that the likelihood

of contracting a certain disease is not the same for all members of the population at

risk even though cases are assumed to be independent of each other vis a vis the to

underlying risk. On the other hand, the spatial clustering phenomenon assumes that

risk occurrence is homogeneous through the entire study region and the presence of

a case affects the odds of risk of other individuals in its neighbourhood.

Method of assessing spatial autocorrelation: Semivariogram

Spatial dependence is one of the vital characteristics of spatial data. It shows how

observations that are close together tend to be more similar than those farther apart

spatially. Like in typical statistical methods where the correlation may be computed

by means of a scatterplot for a number of data points (x, y), the spatial association

between values of a variable y(s) can be estimated using a semivariogram. One way

to explore the spatial correlation is to use the variogram cloud, which is obtained by

plotting all possible squared differences of observation pairs (y(si)− y(sj))
2 against

their separation distance hij. However, to estimate the spatial correlation from ob-

servational data, two important assumptions are usually made: intrinsic stationarity

and isotropy of the spatial process y(s).
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Under these assumptions, the variogram of a spatial stochastic process y(s) is the

function

V ar{y(si)− y(sj)} = V ar(y(si)) + V ar(y(sj))− 2Cov(y(si)− y(sj)) = σ2(1− ρ)

(2.50)

We note that the half of the variogram is a semivariaogram. The following are some

important properties of semivariogram to qualify as a valid one.

• γ(y(s), y(s+ h))=γ(y(s+ h), y(s), i.e. the spatial correlation between y(s)and

y(s+h) is the same as the spatial correlation between y(s+h) and y(s).

• γ(h = 0)=0 as V ar(y(s)− y(s)) = 0

• γ(h)
‖h‖2 → 0 as h →∞

• γ(·) must be conditionally negative definite. That is, for any finite number of

locations si : i = 1,. . .,m and real numbers a1,. . ., am, then
∑m

i=1

∑m
j=1 ai aj

γ(si, sj) ≤ 0.

A graph of a semivariogram plotted against separation distance (‖ h ‖) conveys

information about the continuity and spatial variability of the stochastic process. If

near observations are more similar than those located farther apart, then the graph

may start at zero and gradually increases until it reaches a constant value, referred

to as a sill, as the separation distance increases. This separation distance at which

the graph reaches its apex is called the range. This indicates that the spatial auto-

correlation increases with decreasing separation distance within the range. In case

the graph does not start from zero, it implies that there is a discontinuity at the

origin and the spatial process has a nugget effect. Although the nugget effect is

quite often signaling some measurement error variance (τ 2) in the spatial process,

it may also be an indication of a natural discontinuity in the spatially process. If

the process has a large nugget effect, it is possible for two locations fairly close to-

gether to have very different values. A possible example is found in gold mining

sector where ore may not be found at one location, but then at a nearby location

a mass of gold (i.e. gold nugget) is found. In the field of geostatistics, a number

of semivariogram models have been used, of which the most popular are given below.
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Nevertheless, a comprehensive review of other semivariogram models can be found

in Waller & Gotway (2004).

Exponential semivariogram model

An exponential semivariogram is defined as follows

γ(h, θ) =

{
0 if h = 0

c0 + ce{1− exp(−‖h‖
ae

)} if h 6= 0
(2.51)

where θ = (c0, ce, ‖h‖, ae)t, c0 ≥ 0 is the nugget, ce ≥ 0 is the partial sill, and c0 + ce

is the sill, ‖h‖ is the separation distance, and the effective range, which is conven-

tionally defined as the distance at which the autocorrelation equals 0.05, is 3ae.

Gaussian semivariogram model

The function of a Gaussian semivariogram model is expressed as

γ(h, θ) =

 0 if h = 0

c0 + cg{1− exp(−(‖h‖
ag

)2)} if h 6= 0
(2.52)

where θ = (c0, cg, ‖h‖, ag)t, c0 ≥ 0 is the nugget, cg ≥ 0 is the partial sill, and c0 + ce

is the sill, ‖h‖ is the separation distance, ag ≥ 0, and the effective range
√

3ae.

K-Bessel (Matérn) semivariogram model

A K-Bessel semivariogram model is mathematically defined as follows

γ(h, θ) =

 0 if h = 0

c0 + ck{1− 1
2α−1)Γ(α)

(‖h‖
ak

)αKα
‖h‖
ak
} if h > 0

(2.53)

where θ = (c0, ck, ‖h‖, ak, α)t, c0 ≥ 0 is the nugget, ck ≥ 0 is the partial sill, and

c0 +ck is the sill, ‖h‖ is the separation distance, ak ≥ 0, Kα(·) is the modified Bessel

function of the second kind of order α, and Γ(·) is the gamma function. The sill is

approached as the separation distance tends to infinity.
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Power semivariogram model

Mathematically, a power semivariogram model is described by

γ(h, θ) =

{
0 if h = 0

c0 + b‖h‖p if h 6= 0
(2.54)

where θ = (c0, b, ‖h‖, p)t, c0 ≥ 0 is the nugget, b ≥ 0, and 0 ≤ p ≤ 2, and ‖h‖ is the

separation distance. This family of models does not have a sill nor a range. That

is the spatial correlation does not decrease as lag distance increases. If p = 1, the

model becomes linear.

Spherical semivariogram model

The function of a spherical semivariogram model is defined as

γ(h, θ) =


0 if h = 0

c0 + cs{3
2
(‖h‖
as

)− 2
2
(‖h‖
as

)3} if 0 ≤ h ≤ as

c0 + cs if h > as

(2.55)

where θ = (c0, cs, ‖h‖, as)t, c0 ≥ 0 is the nugget, cs ≥ 0 is the partial sill, c0 + ck

is the sill, ‖h‖ is the separation distance, and as ≥ 0 is the range. Unlike for the

other models discussed earlier, which are valid in one or more dimension space, the

spherical model is valid only in Rd, d = 1, 2, 3.

2.3.6.4 Spatial interpolation and prediction methods

Waller & Gotway (2004) define the interpolation as the process of obtaining a value

for a Gaussian stochastic process of interest at an unsampled location (usually de-

noted as Z(s0)) based on measurements taken from surrounding locations. Interpo-

lation techniques are classified into two broad categories, namely deterministic and

stochastic (probabilistic) interpolators. The main difference between the two classes

is that the latter has a probability model for data and thus provides statistics such as

standard errors while the former does not assume any probability model. When the

latter method is used for interpolation, it is known as a method for spatial prediction.
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Deterministic interpolation techniques

There exists quite a number of deterministic interpolation methods that include

inverse distance weighted, global polynomial, local polynomial, and radial basis func-

tions. Due to their weakness of not providing standard errors of interpolated values,

these models are rarely used. Here we only review the inverse distance weighted

(IDW) method. This interpolation method has been commonly used among other

deterministic models and it obeys Tobler’s law of geography as it assumes that each

input point has a local influence that decreases with distance (Naish, 2012). This

technique is based on a simple weighted average of neighbouring values where the

resulting interpolating surface should be hugely depending on nearby values but not

on values farther apart. The mathematical expression of a general inverse-distance

interpolator is given by

Ẑ0 =

∑n
i=1 ‖ si − s0 ‖−p Z(si)∑n

i=1 ‖ si − s0 ‖−p
(2.56)

where Ẑ0 is the interpolated value, ‖ si − s0 ‖ is the euclidean distance between

ith location (si) and the unsample location s0, and 1 ≤ p ≤ 3 is the power. When

p = 2, the technique is known as inverse-distance-squared interpolator, which is the

most popular interpolation method (Waller & Gotway, 2004). The popularity of the

inverse distance interpolation is due to its mathematical simplicity and flexibility

with respect to computation. We note that the weight assigned to each observation

is an inverse function of the distance between that observation’s location and the

unsample location s0 at which interpolation is needed. If care is taken to ensure

that the interpolated values are based on enough data and a right power, the IDW

method is known to yield a fairly accurate value.

Spatial prediction methods

Originally, geostatistcs modelling was developed to predict the probability distri-

bution of ore grades in mining industry. In 1950, D.G. Krige developed an interpo-

lation technique, named after his name as the kriging method, for use in the South

African mining industry (Gelfand et al., 2010). In collaboration with G Marheron,

a French mathematician at the Ecole of Mines, this method was further improved
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(Van Beers & Kleijnen, 2003). Due to this background, quite often, the geostatistics

modelling was regarded as a statistical modelling technique applied only to geolog-

ical data. However, nowdays, kriging and its derivatives are enjoying a wide range

of applications in diverse disciplines.

Kriging methods are preferred over other interpolation methods as they provide

the best linear unbiased estimators (BLUEs) (Isaaks & Srivastava, 1989; Van Beers

& Kleijnen, 2003). Kriging techniques include among others simple kriging, ordinary

kriging, universal kriging, factorial kriging, block kriging, indicator kriging, strat-

ified kriging, Poisson kriging and cokriging. Despite the existence of many types

of kriging methods, the present review explores only simple kriging. The interested

reader may consult other sources (e.g. Isaaks & Srivastava (1989); Waller & Gotway

(2004)) for a detailed review of other types.

Let Z(s) be the regionalised random variable, where Z(si) refers to the measurement

of Z obtained at point location si, and Z(s0) is assigned to the location where the

regionalised variable is to be estimated. Then, the spatial variation of Z(s) consists

of a trend component (mean) m(s), a spatial stochastic component R(s), and a ran-

dom Gaussian noise (ε) with mean zero and constant variance σ2. Mathematically,

it is expressed as

Z(s) = m(s) +R(s) + ε, ε ∼ N(0, σ2) (2.57)

wherem(s) ∈ R and R(s) is a zero-mean intrinsically stationary random process with

variogram 2γ(·). Assuming the stationarity, the interpolated value at unsampled

location s0 is generally expressed as

Ẑ(s0) = m(s0) +

N(h)∑
i=1

αi(Z(si)−m(si)) (2.58)

The primary objective of kriging methods is to provide best linear unbiased esti-

mators at unsampled locations s0 based on weighted average of adjacent locations

within a given search area and the sum of weights must be equal to one in order

to ensure that estimates are unbiased. The difference between simple and ordinary

Kriging methods is fundamentally based on the assumption made about the func-

tional form of m(s). For simple kriging, m(s) is assumed to be a known constant
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whereas for ordinary kriging, m(s) is assumed to be unknown but constant.

Simple kriging

Since the component trend m(s) is known and constant, say m(s)=m(s)=µ, then

Eq. (2.58) becomes

Ẑ(s0) = µ+

N(h)∑
i=1

αi(Z(si)− µ) (2.59)

With little algebraic manipulation and taking into that consideration the estiamators

are unbiased (i.e.
∑N(h)

i=1 αi = 1), the Eq. (2.59) simplifies to

Ẑ(s0) =

N(h)∑
i=1

αiZ(si) (2.60)

The simple kriging weights are obtained by minimizing the estimate of the error

variance σE(s0). Through some algebraic manipulation, the weights αi are obtained

using αi=K
−1k, where

K =


C(s1 − s1) C(s1 − s2) . . . C(s1 − sN(h))

C(s2 − s1) C(s2 − s2) . . . C(s2 − sN(h))
...

... . . .
...

C(sN(h) − s1) C(sN(h) − s2) . . . C(sN(h) − sN(h))


is a matrix of data covariances and

k =


C(s1 − s0)

C(s2 − s0)
...

C(sN(h) − s0))


is a matrix of covariances between the observed data and the unsampled location,

and

αi =


α1

α2

...

αN(h)


In a practical situation, it is not always possible to know the trend component m(s0)

at an unsampled location, hence, simple kriging is less commonly used.
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Because ordinary kriging assumes a constant unknown trend component, it is by far

the most widely used type of kriging relative to others.

2.3.6.5 Spatial modelling of geostatics data using the SPDE approach

In classical geostatistics as well as in modern hierarchical spatial modelling, Gaus-

sian fields (GFs) are considered as a corner stone of the modelling aspect. GFs

are both analytically and practically convenient because they possess explicit and

computable normalising constants and good analytic properties. Quite often, the

specification of a Gaussian field is achieved through a mean function (µ(·)) and a

covariance matrix ( Σ) whose elements are function of a covariance function and

usually the Matérn covariance function is assumed. This covariance matrix is in

most cases dense, which results in computational issues known as the big n problem.

To overcome the computation issues caused by the big n problem associated with

dense matrix, Lindgren & Rue (2011) suggested a method that makes use of the fact

that a Gaussian field with a Matérn covariance function is a solution to a certain

linear fractional partial differential equation (SPDE). This method consists of the

following main steps. First, find a GMRF that best represents the GF. That is, the

GMRF should have a local neighbourhood and a precision matrix whose inverse Q−1

is close to the covariance matrix of the GF. Second, the computations are done us-

ing the GRMF representations through the use of a set of spatial random functions

with weighted sums of simple basis functions in order to conserve the continuous

interpretation of a GF. Explicitly, a GRMF representation is constructed by using

a stochastic partial differential equation (shown in Eq. (2.61)) which has GFs with

the Matérn covariance function as a solution.

(κ2 −4)
α
2 x(u) = w(u), u ∈ <d, α = ν +

d

2
, κ > 0, ν > 0, (2.61)

where (κ2 − 4)
α
2 is a pseudo differential operator, 4=

∑d
i
∂2

∂x2i
is the Laplacian, κ

is the spatial scale parameter, α is the smoothness parameter, x(u) is a GF, and

w(u) is the spatial white noise. The solution of the SPDE in Eq. (2.61) is called a

Matérn field. Integer values for α give continuous markov fields from which discrete

basis representations can be obtained (Lindgren, 2012).
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Two main results of Eq. (2.61) are presented in Lindgren & Rue (2011).

With the first result, it has been shown that an approximately weak solution to

stochastic partial differential equations can be used to provide an explicit link, which

is expressed as a basis function representation, between some GFs in the Matérn

family and GRMFs for any triangulation on a regular grid of Rd.

The second result, which is an extension on irregular grids, is reviewed below. For

d = 2, the domain R is subdivided into a collection of non-intersecting triangles

with the condition that any two triangles meet in at most a common edge or corner.

Generally, initial vertices are placed at the locations for observations and then ad-

ditional vertices are added in a way that minimises the number of triangles needed

to fill up the size and shape of the study domain of interest. This results to a con-

strained refined Delaunay triangulation, also known as a mesh. Once a stochastic

weak solution formulation to the SPDE is found, a construction of a finite element

representation of this solution is obtained using

x(u) =
n∑
i=1

ψi(u)wi, (2.62)

where n is the number of vertices in the triangulation, {wi} are Gaussian distributed

weights, and {ψi} are basis functions, usually a piecewise linear function in each tri-

angle. At the vertex i, ψi takes the value 1 and zero at all other vertices. The joint

distribution of w={wi, . . . , wn} is selected in a way that the distribution of functions

x(u) approximates the distribution of solutions to Eq. (2.61). This triangulation

process results in a diagonal matrix C and a sparse matrix G, such that the precision

matrix for the weights is expressed as (Lindgren, 2012)

Q ≈ κ4C + 2κ2G+GC−1G, Cij= 〈ψi, ψj〉 and Gij= 〈5ψi,5ψi〉

While constructing a triangulated mesh on top of which the SPDE/GMRF rep-

resentation is to be built, boundary effects from SPDE need to be taken care of. In

case of a stationary field across the entire domain of observations, it is suggested

that the model domain should be extended far enough in order to avoid the influ-

ence of boundary effects on observations (Lindgren, 2012). This can be achieved

by creating a polygon of triangles out of the domain area known as a convex hull

(Krainski & Lindgren, 2013).
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Recall that the SPDE model is defined at the mesh vertices (m dimension) and

the vertices are not necessarily defined at n location points where the response vari-

able is observed. Thus, there is need to specify how the Gaussian Markov random

field and other model components are linked to the response. The specification is

achieved through a projector matrix that projects the process at the mesh vertices

to the locations response.

A simple SPDE model is then defined using the inla.spde2.matern(·) object where

the prior distributions of parameters are defined according to a specific situation.

The Bayesian inference is based on the integrated nested Laplace approximation.

More details on fitting a SPDE model can be obtained from (Krainski & Lindgren,

2013).

2.3.7 Spatio-temporal modelling

2.3.7.1 Introduction

In previous sections, the reviewed analysis methods focused on the spatial aspect

of data, but they did not account for the temporal aspect that might be present

in the actual data. This means that the stochastic process {Y (s) : s ∈ D ⊆ Rd}
was assumed to vary only as a function of the spatial location s. To include the

temporal aspect, we now consider processes, {Y (s, t) : (s, t) ∈ D ⊆ Rd × R}, which

are a function of both the spatial location, s ∈ Rd, and time, t ∈ R. This yields

a spatio-temporal process. Although some of the concepts in analysis of spatio-

temporal observations are accepted as generalisations of those developed for spatial

data, it is worthy to note that time differs intrinsically from space. For instance,

time moves only forward, while there might be many directions in space. Thus, it

is easy to define temporal lags, whereas it is difficult to define spatial lags that are

comparable with temporal lags.

Let y(s, t) =m(s, t) + R(s, t) + ε(s, t) be the Gaussian process, which is an ex-

tension of the spatial process presented in Eq. (2.57). Here m(s, t) represents a

deterministic space-time trend function, R(s, t) is a stationary process with mean
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zero and continuous sample paths, and ε(s, t) is an error field, also called the nugget

effect, with mean zero and discontinuous realizations, which is independent of R.

The main objective of spatio-temporal modelling is to specify the mean structure

and covariance structure, and interpolate the value of y(so, t0) at an unsampled

location (s0) at a specific point in time (t0). In what follows, we first review the

mean structure modelling and thereafter we move on with the review of covariance

structure modelling.

2.3.7.2 Mean structure models

The space-time trend function, m(s, t), consists of a purely spatial component, a

purely temporal trend component, and a space-time interaction component. For

count data, the space-time trend component may generally be expressed as follows

log(m(s, t)) = m0 + As +Bt + Cst, (2.63)

where s = 1, . . . , n, t = 1, . . . , T , As is a spatial component, Bt is a temporal com-

ponent, and Cst is a space-temporal component. In the literature, there exist many

parametrizations of Eq.(2.63). For example, Bernardinelli et al. (1995) formulated

the linear predictor as

log(m(s, t)) = m0 + us + νs + (β + δs)× t (2.64)

The parametric trend for the temporal component consists of the main linear trend

β which is the representation of the global time effect, and δs is the interaction

between time and space. us assumes a CAR prior distribution, that is us | u−s ∼
N( 1

ns

∑
us,

1
τns

); ν assumes exchangeable prior (i.e. νs ∼ N(0, σ2
νs ); β assumes

a weak informative Gaussian prior β ∼ N(0, σ2
β); and δs may assume a Gaussian

prior or CAR structure. Another formulation of the mean structure, which relaxes

the restrictive linearity assumption imposed on the differential trend δs, which is

expressed as follows (Knorr-Held, 1999)

log(m(s, t)) = m0 + us + νs + γt + φst (2.65)

Conditional autoregressive prior distributions are quite often assumed for γt. That

is γt ∼ N(ξγt−1,
1
τγt

). If ξ = 1, then γt becomes a non-parametric random effect with

a random walk prior. φst is commonly assumed to follow a Gaussian prior with mean
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zero (i.e. φst ∼ N(0, σ2
φ)). φst may assume other types of prior distributions such as

type I interaction, type II random walk interaction, type III interaction consisting of

time-averaged spatial correlation, and type IV interaction, which is fully space-time

dependent (see Lawson (2013); Blangiardo & Cameletti (2015)). Often, temporal

trends are periodic and exhibit some seasonal effects and hence can be modelled with

trigonometric functions or seasonal models. Additional to the spatial and temporal

coordinates, the trend component might be a function of environmental temporal

and/or spatial covariates such as temperature or population density.

2.3.7.3 Covariance structure models

Unlike for spatial domain, the estimation of space-time covariance structures can be

problematic if no bridging assumptions are made. For instance, under the second

order stationary assumption of a stochastic process, by definition, in spatial setting

the covariance is given by C(h) = C(−h). But, in the spatio-temporal context,

C(h, u) = C(−h, u) = C(h,−u) does not hold each time (h and u are spatial and

temporal shifts, respectively). The following are some important properties of a

space-time covariance functions:

• Separable space-time covariance function:

A space-time covariance function is defined to be separable if it decomposes into

two components, namely the purely spatial component and the purely temporal

component. That is C(h, u) = C(h)C(u). While this assumption has numerous

advantages (e.g. parsimony of the model and enhances fast computation for large

space-time data), this assumption does not cater for space-time interactions. In ad-

dition, separable covariance models fail to fit most physical situations as they are too

simplistic (Gelfand et al., 2010). A separable space-time covariance function can be

constructed by multiplying together any valid spatial covariance function and valid

temporal covariance function. A simple example is using a spatial correlation from

a member of the exponential family together with a temporal correlation from an

autoregressive process of order 1 (AR(1)) with parameter ρ = exp(−νt) to produce

a separable spacetime covariance (Sherman, 2011) expressed as

C(h, u, θ)= σ2 exp(−νs ‖ h ‖) exp(−νt | u |), where θ = (σ2, νs, νt), σ
2 is a scale

parameter, and νs and νt are decay parameters.
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• Fully symmetric space-time covariance function:

A space-time covariance function is fully symmetric if for any two locations, the

model is unable to distinguish possible differing effects as time moves forward or

backward. That is expressed mathematically as

C(h, u) = C(−h, u) = C(h,−u).

• Nonseparable space-time covariance function:

As separable covariance models have frequently been unable to fit physical phe-

nomena and observational data, a class of nonseparable functions has been sought.

Various scholars have played important role in developing nonseparable space-time

covariance functions. These functions have been constructed through partial dif-

ferential equations and through spectral densities. In addition, general classes of

nonseprable covariance functions were constructed using closed Fourier inversion

form in Rd (Sherman, 2011). Gneiting (2002) introduced a Fourier-free implemen-

tation of nonseparable and stationary covariance functions that allow for space-time

interactions and expanded the class of valid space-time covariance functions. An

easily interpretable nonseparable space-time covariance function with interaction

parameter (Gneiting, 2002) is expressed as

C(h, u, θ) =
σ2

(| u |2γ +1)τ
exp{ −c ‖ h ‖

2γ

(| u |2γ +1)βγ
}, (2.66)

where θ = (β, γ, σ2, τ), β ∈ (0, 1] quantifies the strength of the space-time interac-

tion, γ ∈ (0, 1] is a smoothness parameter of the spatial correlation, τ is a smoothness

parameter of the temporal correlation, and c indicates the strength of the spatial

correlation.
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2.4 Some current issues in spatial and spatio-temporal

modelling

2.4.1 Misalignment

In epidemiology, ecology, agriculture and geology, and other many fields, relating

data collected at different scales, locations and dimensions poses challenges in spatial

analysis. With the increasing availability of geographically referenced data, linking

of collected data is indeed unavoidable as the exploitation of this readily available

information helps avoiding the implementation of new and expensive data collection.

In statistical literature, the analysis of originally collected data on one resolution

with the purpose to make inferences on a different level of spatial resolution is re-

ferred to as the misalignment problem (Gotway & Young, 2002). This problem may

present itself in many different facets with varying characteristics.

Recent advances in geographic information systems (GIS) and internet make it pos-

sible to access spatial data in various forms that include point, line, area, surface,

etc. But one major concern is how best these data can be integrated to answer real

life problems. The integration of such information may require the data transforma-

tion as the spatial process of interest intrinsically present in one form of data may

completely be different from the one observed in another form of data. In spatial

statistics, one commonly used transformation is the change of support. In statistical

terms, a support means the shape, size, and volume associated with each data value,

and which also extends to the spatial orientation of the domains of study associated

with each spatial measurement. Thus, changing the support of the spatial random

process generates a new variable related to the old one but with new statistical prop-

erties. Consequently, every time a support is changed, it implies that new statistical

properties of a spatial process should be studied. In statistical literature, this prob-

lem is referred to as a change of support problem (COSP)(Waller & Gotway, 2004).

Table 2.3, adapted from Gotway & Young (2002), shows some of the commonly

encountered change of support problems in spatial modelling. A discussion of some

of the change of support problems is given in the subsequent paragraphs.

Modifiable Areal Unit Problem (MAUP) and Ecological fallacy (EF) are examples
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Table 2.3: Examples of change of support problems (Gotway & Young (2002))

Process observed at spatial level Inference at spatial level
Point Point
Area Point
Point Line
Point Area
Point Surface
Area Area

of COSPs. These problems are caused by aggregation. In general, aggregation re-

duces heterogeneity among units or individuals as the uniqueness of each unit or

individual is lost.

A Modifiable Areal Unit Problem arises when one wishes to use a variable ob-

served at the areal-level of spatial aggregation in order to make inference at another

areal-level of aggregation. Stated differently, this problem refers to inference made

using spatial data at a different level of spatial resolution than it was originally

collected. For example, a spatial random process Y is observed at k blocks (i.e.

Y (B1), . . . , Y (Bk)) but predictions Y (B́1), . . . , Y (B́k) are to be made from observed

blocks data. Specifically, one may wish to estimate the relative risk of a given dis-

ease at enumeration area level (lower level) using counts observed at constituency

level (higher level). MAUP leads to two side effects namely scale and group ef-

fects. The scale effect, also known as the aggregation effect, refers to obtaining

different inferences as aggregation into increasingly larger areal units is made. The

zoning effect also referred to as grouping effect concerns the variability in results due

to differences in shape of areal units even if they are at the same scale of aggregation.

Ecological fallacy occurs when inferences made using aggregated data may not ac-

curately reveal the same inferences as those ones would be obtained if individual

level data were to be used. It generally refers to as the inference about the point

level made from the aggregate level. For example, a spatial random process Y is

observed at a finite blocks (Bs) but the inference is about Y (ś1), . . . , Y (śk), start-

ing from Y (B1), . . . , Y (Bk). Quite often, associations observed between variables

measured at aggregate level overstate the relationships in the same variables when
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measured at the individual level. In other words, using aggregated data to infer at

individual level results in biased conclusions. In the literature, the resulting bias is

referred to as the ecological bias, which comprises of aggregation and specification

biases (Gotway & Young, 2002). These effects are similar to the aggregation effect

and the zoning effect discussed under MAUP.

In spatial regression modelling, it is quite common to encounter situations whereby

the dependent (Y ) variable and its explanatory variable (X) are spatially misaligned.

This type of misalignment may be manifested in one of the following facets.

• Point to point misalignment:

X is at one point level and Y is observed at a different point level. For example,

the purpose is to relate an exposure, say pollution observed at specific sites, to a

chronic respiratory disease observed at an individual level.

• Point to area:

An explanatory random variable X , available at point level , is to be related to Y ,

which is observed at areal level. Also, the points to points misalignment problem

may occur if for instance a spatial random process Y (S) is observed at a finite

set of sites, si, i = 1, . . . , k, (i.e. Y (s1), . . . , Y (sk)) and the interest is to predict

Y (B́1), . . . , Y (B́k), where B́is are blocks (or areal units) in the study domain.

• Block to bloc misalignment:

Both X and Y are available at different levels of aggregation.

Another form of misalignment may occur if one wishes to integrate two data sets

measured at different levels of aggregation. This may be the case of jointly mod-

elling two more diseases.
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Various methods of resolving misalignment, which include kriging method, Monte

carlo integration, downscaling methods and Bayesian models, have been proposed

(Goovaerts, 2008; Keil, Belmaker, Wilson, Unitt, & Jetz, 2013; Sturrock et al., 2014;

Araújo, Thuiller, Williams, & Reginster, 2005; Lee & Sarran, 2015; Finley, Banerjee,

& Cook, 2014; Illian, Møller, & Waagepetersen, 2009). For instance, methods have

been applied to downscale the distributions of data from coarse to fine grain that

include direct method, point sampling method, and hierarchical Bayesian method,

which have all been adopted to deal with this scenario of misalignment (Keil et

al., 2013; Sturrock et al., 2014; Araújo et al., 2005). Other techniques have been

developed that deal with the spatial misalignment that arises when the response

variable is available at bigger and irregular shaped area units, and where covariates

are available at smaller fine grids (Lee & Sarran, 2015). In the case where misalign-

ment occurs with non-nested overlapping grids, hierarchical Bayesian approaches

have been employed (Banerjee et al., 2004; Finley et al., 2014). Of recent, the latter

has been extensively applied as it permits to derive posterior predictive distributions

for both parameters and it enables to incorporate additional sources of information

in a form of prior knowledge in order to deal with multiple sources of uncertainty

(Illian et al., 2009).

For jointly modelling different data sets, different approaches of multivariate tech-

niques that include the multivariate normal distribution, iterative generalised least

squares (IGLS) method, multivariate conditional autoregressive (MCAR) modelling,

and the shared-component modelling are commonly used in the spatial analysis

of multiple diseases (Manda, Feltbower, & Gilthorpe, 2012). A reparametrised

and marginalised posterior sampling (RAMPS) algorithm was introduced by (Yan,

Cowles, Wang, & Armonstrong, 2007) with the purpose of lowering autocorrelation

in MCMC samples, which is known to lead to computational convergence problems

when anlaysing large spatiotemporal data sets. Cowles, Yan, & Smith (2009) further

extended RAMPS to allow jointly modelling of areal and point-referenced data. An

illustration of the implementation of RAMPS algorithm in the R package ramps can

be found in Smith, Yan, Cowles, et al. (2008).
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For point referenced data, an adaptive geostatistical sampling technique has been

perceived as a tool that helps avoiding to report results derived from multiple data

sources which are quite often known to have different accuracies and to be spatially

and temporally misaligned (Kabaghe et al., 2017). This type of sampling technique

replaces the process of sampling in a single phase by splitting it up into several

successive phases. On any sampling phase, the choice of sampling units is informed

by the results computed from information obtained from the previous sampling

phase (Kabaghe et al., 2017). In other words, it enables the collection of both re-

sponse variables and its covariates to depend on the information previously gathered

(Chipeta, Terlouw, Phiri, & Diggle, 2015). Although this sampling method yields

better representative surveys relative to surveys resulting from the traditional ways

of sampling, it avoids integrating information readily available from the multiple

sources.

2.4.2 Edge effects

Borders of a domain of study or physical barriers such as rivers or a forest may

define the boundaries or edges of a study area. In most of cases, the area beyond

the edges may have incomplete data or no data at all. Also, areas at boundaries

have very few neighbours relative to those in the center of the study domain as the

areas beyond the edges are not part of the study region. Thus, any spatial analysis

based on borrowing strength from neighbouring areas may produce distorted results

at points or areas at edges since very few neighbours are available. In the literature,

these distortions are generally referred to as boundary or edge effects. The bound-

ary effects constitute a major problem in smoothing because of the nonavailability

of data or fewer data that are available near the boundaries, and as well due to

the properties of the particular smoothing technique being employed. For example,

when using Ripley K-function to analyse a point pattern at a range of scales and

to determine at which scales these points tend to be regular or clumped, the edge

effect occurs within the search circle.

Many methods of dealing with edge effects have been proposed with weighting sys-

tems and guard areas being commonly used. Weighting systems are based on setting
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up weights that relate the position of the point or area to the external edge. This

approach gives less weights to observations near the edges. The weights assigned

to observations act as proxies of the degree of missing information at the specific

locations (Lawson et al., 1999). For situations whereby a small portion of study

area is near the boundaries and the purpose is to estimate the overall parameter,

then the edge correction method based on weighting may be used to attenuate the

boundary effects. In hierarchical Bayesian modelling, it is proposed to accommodate

edge-weighted data by weighing each area through the addition of an offset term in

the linear predictor of the regression model (Lawson et al., 1999).

Another way of dealing with edge effects is to employ external areas to the main

domain of study. These areas are known as guard areas and they can be constructed

by adding an area to the study window or by considering some fixed distances from

the external boundaries. For both point and areal spatial processes, it is recom-

mended to use internal or external guard areas through augmentation achieved by

Monte Carlo Markov Chain (MCMC) simulations. Although the guard areas are

used in the estimation process, the results at these areas are not reported because

they are subjected to boundary effects themselves (Lawson et al., 1999).

Another alternative way of handling edge effects is to consider that data are missing

along the boundaries of the study area and estimate the missing data (Griffith, 1985).

Other edge correction methods proposed by Griffith (1985) are based upon a dummy

variable discrimination between border areal units and non-edge areas and on a gen-

eralised least squares (GLS) type of adjustment matrix. For the point pattern spatial

process, boundary correction methods for K-function have been proposed: Reply’s

circumference correction, toroidal correction and guard area correction (Yamada &

Rogerson, 2003).
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2.4.3 Measurement error models

In almost every statistical analysis, it is assumed that all observations obtained from

variables involved in modelling are error free. But, in many situations, this assump-

tion is not met. For instance, the variable of interest cannot be measured correctly.

This may occur when a researcher is interested in measuring the average sugar in-

take, intelligence, or age. Because the true value is not measurable, a surrogate

measurement is taken instead. The measurement error is defined as the discrepancy

between the true value and the observed value of random variable.

Quite often, one hopes to have accounted for measurement errors by including a

disturbance term, sometimes called an error term (ε), in the model. This term is

generally intended to represent unexplained variability due to explanatory variables

that might have been actually excluded in the model. It has been argued that as

long as measurement errors are negligible in magnitude, then they can be assumed

to be merged in the disturbance term and they will have minimal effects on the

statistical inferences. Otherwise, they will affect statistical inferences (Chen, Hong,

& Nekipelov, 2007).

2.4.3.1 Types of measurement errors

• Classical measurement errors

Assume a variable y is linearly dependent on x. Further, assume that y is error free

whereas x is observed with errors in additive form. That is w = x + νx, where νx

is error associated with x and it has a zero mean and variance σ2
x. Thus, a simple

linear model is given by

y = βx+ ε (2.67)

The measurement error in the explanatory variable (νx) is said to be a classical

measurement error if it has a zero mean, is uncorrelated with the true dependent

(y) and (x), and is uncorrelated with the disturbance term (ε) (Pischke, 2007). That

is, E(νx) = 0, plim 1
n
(ýνx) = 0, plim 1

n
(x́νx) = 0, and plim 1

n
(ένx) = 0. With a little

algebraic manipulation of Eq. (2.67), it can be shown that the error in x becomes

part of the disturbance term and thus creating a bias (i.e. y = βw + (ε− βνx).
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• Non-classical measurement errors

If it is assumed that error term in νx is correlated with the explanatory variable

x, then it is said to be a non-classical error. One example of this type of error is

the one generated by a misclassification of the binary regressor. In this case, the

measurement error is negatively correlated to the true dichotomous variable.

2.4.3.2 Measurement error models

The main aim of measurement error modelling is to obtain nearly unbiased esti-

mates of the parameters by indirectly fitting a model for Y in terms of observed

explanatory covariate (W ) prone to errors. However, Carroll, Ruppert, Stefanski, &

Crainiceanu (2006) warned that a direct substitution of W for X with no adjustment

in the normal routine of model fitting may lead to biased estimators. In addition,

the mis-specification of a measurement error model leads to erroneous inferences.

The specification of a measurement error model is based on an assumption about the

distribution of the observed values given the true values or vice versa (Buonaccorsi,

2010). For the classical measurement error model, the distribution of the observed

values given the true values is specified, while the latter specification is referred to

as the Berkson error model. That is, the classical measurement error model is ex-

pressed as P (W = w | x), while the Berkson error model is given by P (X = x | w).

X and W are the true and observed covariates, respectively.

• Additive non-differential measurement error model

An additive non-differential classical measurement error model assumes that the

measurement error does not depend on the value of the response and w | x = x+ ν.

In this case, w are observed values of the true but unobserved covariates X (i.e. W s

are surrogate of Xs). The error term ν can assume a Gaussian prior with a zero

mean and a covariance matrix C = τνD (i.e. ν ∼ N(0, C)), where τν is the precision

of the error term and D is the diagonal matrix of fixed scaling values (di) of the

observational precision.

The Berkson error model specifies the distribution of X | W . Let us assume that

the response variable is measured without error and only X is measured with error.
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The additive Berkson model with a constant variance assumes that

X = W + ei with E(ei) = 0 and V ar(ei) = σ2
e . The linear relationship between Y

and X can be written as Yi = β0 + β1Wi + εi ,

where εi = β1ei + εi, E(εi) = 0 and V ar(εi) = β2
1σ

2
e + σ2

• Non-linear measurement error model

If the response or the predictor variable is measured with errors and the response

variable is nonlinearly related to the explanatory variable, then the measurement er-

ror model is called a non-linear measurement model. Both the classical and Berkson

non-linear measurement error models may appear separately or jointly in a single

application.

2.4.3.3 Some of the methods of correcting measurement error bias

Measurement errors are cause of bias, inconsistency in parameter estimates and

erroneous conclusions in statistical analyses. Consequently, many researchers have

devoted considerable effort to this problem in order to design methods for addressing

it. This has led to the development of a rich literature on dealing with measure-

ment error in the response variable and covariates( e.g. Fuller (1987); Gustafson

(2004); Carroll et al. (2006); Buonaccorsi (2010)). The literature on measurement

error has become a cornerstone in many fields as many important risk factors are

generally acknowledged to be mismeasured. Cited measurement error correction

techniques include structural equation models, two stage least squares regression,

partial least squares regression, ordinary least squares regression on factor scores,

regression calibration, method of moments, simulation extrapolation, moment re-

construction method, disattenuated regression on summated rating scales (SRS),

and multiple over-imputation.

Th structural equation modelling approach attenuates the measurement error bias

by finding latent dimensions that could have been the origin of the host of mismea-

sured values. This method uses multiple the indicators structural equation approach

to simultaneously estimate the measurement error and the parameters through the

likelihood estimation. All information in the variance-covariance matrix variables is
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employed in the joint estimation. However, one of its drawbacks is that if there are

estimation errors in some parts of the model they are likely to affect the estimation

of parameters (Charles, 2005). Moreover, this method is believed to rely heavily on

large samples and it might present a great degree of complexity if it is not accom-

panied by strong assumptions (Bisbe, Coenders, Saris, & Batista-Foguet, 2006).

Two stage least squares regression consists of two steps. In the first step, a variable

which is highly correlated to the mismeasured variable but not correlated to the

error term, known as an instrumental variable, is selected. In the second step, least

squares regression is carried out with the instrumental variable replacing the variable

measured with error in the model. Although this method alleviates the error bias, it

produces estimates that are heavily dependent on the choice of instrumental variable.

Both partial least squares (PLS) regression and ordinary least squares (OLS) re-

gression are known to be useful if the purpose of the analysis is predictive or is

exploratory of summated rating scales. The partial least squares regression on SRS

is consistent only under the condition of perfect reliability or the number of items

per dimension tends to infinity (Bisbe et al., 2006).

As an alternative method to PLS and OLS regressions on summated rating scales,

Bisbe et al. (2006) developed a disattenuated regression (DR) on SRS. This method

is executed in three main steps. Firstly, the reliability of the summated rating scales

is estimated. Secondly, this estimate of the reliability is used in the computation

of variances of summated rating scales. Lastly, the computed variances are fed in

the variance-covariance matrix from which the ordinary least squares estimates are

computed.

The method of moments estimator therefore corrects the bias by simply dividing

the parameter estimate by the reliability ratio. This method suffers two major

drawbacks: it is hugely dependent on the estimate of the measurement error vari-

ance and it works pretty well with linear models.
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The simulation extrapolation method simulates the effects of adding error to a single

variable measured with error and it uses the simulated values to infer about the case

of the values of an error free variable. The computation becomes difficult in case of

multiple variables measured with errors. Also, it relies heavily on the extrapolated

parameters.

The regression calibration method is a two stage regression method which replaces

a mismeasured variable with an estimate that is a function of the variable measured

with error. In other words, the calibrated data are expected values conditional on

the measured data. The calibrated data is then used in the analysis instead of the

observed values. This method presents a number of loopholes. It is only consistent

for nonlinear regression models; it is not convenient for the estimation of residual

variance analysis as the distribution of the estimated variable does not preserve the

variance-covariance of the underlying unmeasured variable; and it is valid under the

condition that the measurement error does not depend on the value of the response

and mismeasured variable (i.e. under non-differential measurement error assump-

tion) (Freedman, Fainberg, Kipnis, Midthune, & Carroll, 2004).

The moment reconstruction method developed by Freedman et al. (2004) is sim-

ilar to regression calibration in that it replaces the observed data with adjusted

values, but the adjusted values are empirical Bayes estimates of the true values con-

ditional on the the response variable. The adjusted values have the same first two

moments as the unobserved true variable data.

Blackwell, Honaker, & King (2017) developed over-imputation which is an extension

of the multiple imputation method for missing data. Their method is based on a

concept that views the measurement error as a type of missing data problem where

the measured values are regarded as prior information for the true unobserved val-

ues. If no prior information is available, which is the extreme case of measurement

error, then one has to deal with the missing data problem. The method imputes the

missing values from their predictive posterior and overwrites mismeasured values or

variables with draws obtained from their predictive posterior where the observed val-

ues, other variables, and available assumptions are used as prior information. This
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method allows one to deal with missing data problems and correct for measurement

error in more than one variable.

Another way of attenuating the measurement error cited in literature is to fix the

proportion of measurement error to a fixed value (Charles, 2005). Although the

method may be easy to implement, it does not provide the guidelines on how the

proportion of error is chosen. Instead of fixing the error to a priori value, some

researchers have opted to assign a prior distribution to error component (Charles,

2005).

2.5 Disease mapping

2.5.1 Introduction

Lawson & Williams (2013) define disease mapping as a geographical distribution

of a disease within a population. This distribution is achieved through the visual

representation of the geographical residential addresses of diseased individuals (ref-

erenced spatial data points) or counts of individuals with a disease in small areas.

A disease map, which is the collection of disease information such as residential lo-

cations of individuals or summary measures for groups of individuals in small areas,

is an essential element of the disease mapping discipline as it is an efficient way

of exhibiting the distribution of phenomena in space and time as well. Maps can

reveal and communicate spatial findings in a better way than statistical tables do.

Generally, two types of maps are distinguished, namely maps of infectious diseases

and maps of non-infectious disease. The latter maps are used to point out sources

or causes of outbreak referred to as putative sources of health hazard. Whilst the

former type of maps are used to analyse time trends and the spatial clustering of dis-

ease and also to identify possible associations between factors and disease clusters.

Disease maps are constructed either using raw data or results of some statistical

analysis such as standardised mortality, morbidity ratio or relative risk (Blangiardo

& Cameletti, 2015).
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In this section, the focus is on the analysis of count data. The Poisson regres-

sion models are considered as standard tools for analysing count data when the

key Poisson model assumption of equality between the mean and variance is met.

However, count data quite often presents an excess of zero counts than it would

be expected under a standard normal Poisson process and hence the equality as-

sumption does not hold. This type of data is referred to zero inflated count data.

Such data can be further classified into two classes namely, upper bounded data

with excess of zeros or unbounded count data with excess of zeros. The former class

is referred to as the binomial type whereas the latter class is known as a Poisson

type (Hall, 2000). Data generating processes that result in zero inflated count data

are commonly encountered in various fields such as agriculture, econometrics, man-

ufacturing, road safety, medicine, sexual behaviour, and horticulture. To model the

aggregated data to a large spatial area or temporal unit is seen as one of the ways

of circumventing the problem posed by the excess of zeros in sparse count data.

However, the aggregation of data introduces the ecological bias, which is a fallacy

that occurs when conclusions about individual associations are based on aggregate

(Rodriques-Motta, Gianola, Heringstad, Rosa, & Chang, 2007).

Various methods are proposed in the literature to model sparse count data domi-

nated by zeros. In recent years, zero inflated Poisson (ZIP) and Zero inflated negative

Binomial (ZINB) models have been extensively used to overcome the over-dispersion

problem induced by the excess of zeros. However, according to Ridout, Demétrio, &

Hinde (1998), both zero-truncated models and zero-inflate models (ZIP and ZINB)

are explicitly dependent on the functional form of the probability assumed for zero

counts and consequently a wrong functional form specification leads to inconsistency

in parameter estimates. A test score to compare the zero-inflated regression model

versus the zero-inflated negative binomial was developed by Ridout et al. (1998) in

order to overcome the problem of functional form misspecification. The Rao and

Chakravarti criterion to distinguish between a simple Poisson regression and ZIP

models is also quite often used (Rodriques-Motta et al., 2007). Among other models

proposed by scholars as remedies to excess of zeros in count data are the sparse

Poisson convolution model (Song et al., 2011), standard unimodal distribution with

extra dispersion, non standard mixture models, two part models (Cunningham &
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Lindenmayer, 2005; Fernandes, Schmidt, & Migon, 2009) and Neyman type A dis-

tribution (Dobbie & Welsh, 2001).

2.5.2 Univariate disease mapping

Suppose y=(y1,. . .,yn) is a vector of observed counts of disease cases for a set of region

i={1, . . . , n} in a given study domain D. In a generalised linear modelling approach,

such counts are modelled as either Poisson or binomial random variables through a

log or logit link function, respectively. When dealing with rare diseases, a Poisson

model can be employed as an approximation to a binomial model (Gelfand et al.,

2010). However, a standard Poisson model does not deal with extra-dispersion which

might be caused by a spatial dependence among areal units. To take into account the

spatial dependence, Poisson models which allow to borrow information across areal

units are used. To this end, we outline different forms of random effects modelling

which include exchangeable random effects, spatial structured random effects, and

a combination of exchangeable and structured random effects. We assume that the

rate of the disease is explained by random effects solely in the absence of covariates.

2.5.2.1 Exchangeable random effects modelling

Let yi be the count of cases in the areal unit i of region D, ni be the population count

in the same areal unit i, λ be the probability of contracting the disease, Ei = λni

be the corresponding expected count of cases for the areal unit i, and mi be the

relative risk for contracting the disease in the area i. Then

yi|mi ∼ Poisson(Eimi), (2.68)

where log (mi)= β0+φi, β0 is a fixed intercept associated with the whole study

domain D, and φi is a random intercept associated with each area i. The excess

variability or overdispersion is introduced through the exchangeable random inter-

cept approach (φi). That is φi ∼ N(0,σ2
φ), for i=1,. . .,n, provided the variance is

known or is assigned a proper hyperprior (e.g. inverse gamma distribution).
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The introduction of the random effects allows to relate local relative risks among

themselves ( mis) via the prior distribution and reduce the estimation process of n

parameters to the estimation of two parameters, namely the intercept β0, and the

variance σ2
φ of φ.

2.5.2.2 Spatially structured random effects modelling

With regards to this option, the idea is to replace the set of exchangeable priors at

the second stage of hierarchical modelling with a spatially structured prior distribu-

tion. This yields local estimates which are weighted averages of area data value and

observations in neighbouring areas. Thus, this modelling approach induces some

form of correlation. Two approaches are distinguished: the multivariate gaussian

model and the conditional autoregressive (CAR) model. In both approaches, Eq.

(2.68) becomes

yi|mi ∼ Poisson(Eimi), (2.69)

where log (mi)= β0+ωi.

The distribution of ω=(ω1,. . . , ωn), a vector of spatially correlated random effects

is discussed differently according to the two approaches above mentioned. First,

we consider that ω follows a multivariate normal distribution with mean zero and

spatial covariance matrix (Σω). That is ω ∼ MVN(0, Σω). Naturally, the spatial

covariance matrix comprises parametric functions defining covariance as a function

of the relative locations of any pair of observations. The following are some standard

families of covariance functions that meet the necessary and sufficient condition of

positive definiteness:

• The Matérn family

The Matérn family is the most popular family that meets both criteria of a de-

creasing correlation between two spatial processes S(x) and S(x́) as the euclidean

distance d=‖ x− x́ ‖ increases and a varying smoothness in the spatial process. It

is generally favoured because of its flexibility and the physical meaning of the shape

parameter (i.e. the differentiability measure of S(x)) (Diggle & Ribeiro Jr, 2007).

The Matérn correlation function is given by;
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CorM(S(x), S(x́)) =
21−ν

Γ(ν)
(κ ‖ x− x́ ‖)νκv(κ ‖ x− x́ ‖), (2.70)

where ‖ . ‖ denotes the Euclidean distance, κν(·) is the modified Bessel function of

second order, k and ν are the scale parameter and smoothness (shape) parameter,

respectively. If ν=0.5 and ν → ∞, the Matérn correlation function becomes the

exponential correlation function and the Gaussian correlation function, respectively.

The mathematical expressions of the exponential and Gaussian correlation functions

are given as

Cor(S(x), S(x́)) = exp(−κ ‖ x− x́ ‖) (Exponential) (2.71)

Cor(S(x), S(x́)) = exp{−(κ ‖ x− x́ ‖)2} (Gaussian) (2.72)

• The powered exponential family

Like the Matérn family, the powered exponential family produces correlation func-

tions which are monotonically declining in euclidean distance. But, it is not as flex-

ible as the Matérn family as its Gaussian process S(x) is mean-square continuous

but not mean-square differentiable for all 0 < ν < 2. This family has a correlation

function defined by

Cor(S(x), S(x́)) = exp{−(κ ‖ x− x́ ‖)ν}, (2.73)

where κ and ν are scale and shape parameters respectively; and 0≤ ν ≤ 2.

• The spherical family

The correlation function of this class is given by

Cor(S(x), S(x́)) =

{
1− 3

2
κ ‖ x− x́ ‖ +1

2
(κ ‖ x− x́ ‖)3 if 0≤ ‖ x-x́ ‖ ≤ κ

0 if ‖ x-x́ ‖ > κ

(2.74)

The spherical is commonly used in classical geostatistics. However, it is less flexible

as compared to the two-parameter Matérn. One major difference of the spherical

family from other families is that it has a finite range for sufficient large euclidean

distance (i.e. Cor(S(x), S(x́))=0 for ‖ x-x́ ‖ � κ). Also, it is only once differen-

tiable at ‖ x-x́ ‖ = κ
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• Non-monotone correlation functions family

One fundamental difference between this and the other families described earlier

is that it is characterised by an oscillatory behaviour. In nature, non-monotone

correlation functions are scarce. One notable example of this type of correlation

function is the sinusoidal function of the euclidean distance whose algebraic form is

given by

Cor(S(x), S(x́)) = (κ ‖ x− x́ ‖)−1 sin((κ ‖ x− x́ ‖) (2.75)

Second, unlike in the preceding section wherein the specification of the variance-

covariance matrix was achieved through a direct use of parametric functions of

distance; in this section its specification is accomplished by using spatial proximity

measures. The structure considered here emulates the time-series approach which

commonly uses autoregressive models where the current observation is regressed on

observed values of a subset of observations that have occurred in the recent past. In

the spatial context, the observations that have occurred in the recent past are equiv-

alent to observations that have occurred nearby. In simple terms, an autoregressive

model reflects a self-regression model. Through such regression, the spatial simi-

larity is introduced by treating observations at neighbouring locations as additional

covariates in the model, instead of formulating an explicit mathematical expression

for the covariance function of the error terms. Two classes of autoregressive models,

namely the conditional autoregressive (CAR) model and the simultaneous autore-

gressive (SAR) model, are reviewed below.

• Conditional autoregressive (CAR) model:

Assume that ωi, the area-specific effect specified in Eq. (2.69) is a normally dis-

tributed random variable as follows

ωi | ω−i ∼ N(µi +
ρ

Ni

n∑
j=1

bij(ωj − µj), σ2
i ) (2.76)

σ2
i =

σ2
u

Ni
where ω−i denotes the vector of all area-specific effects in the neighbourhood

of area i except ωi, Ni is the number of the neighbours of area i,
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µi is the mean for area i which is a weighted average of the other ωj (for j 6= i )

and σ2
i =

σ2
u

Ni
is its variance, bij defines the neighbourhood spatial proximity (bij=1 if

the area i is neighbour of area j and 0 otherwise, bii=0), and ρ is the parameter

that controls the properness of the distribution. The Eq. (2.76) is referred to as a

proper conditional autoregressive model of ωi | ω−i. The joint proper conditional

autoregressive model for ω=(ω1,. . .,ωn) is given by

ω ∼ N(µ, (I − ρB)−1σ2), (2.77)

where µ=(µ1,. . . ,µn), B is the matrix generated by the elements
bij
Ni

, and σ=diag(σ1,. . .,σn).

The nonsingularity of the matrix (I−ρB)−1σ2 is assured if ρ ∈ ( 1
λ(1)

,. . ., 1
λ(n)

)(Banerjee

et al., 2004), where 1
λ(i)

s are the eigenvalues of B. If ρ=1 in Eq. (2.76), then the

proper CAR model simplidies to a version known as an intrinsic autoregressive

(iCAR) model represented by

ωi | ω−i ∼ N(µi +
1

Ni

n∑
j=1

bij(ωj − µj), σ2
i ) (2.78)

It is impossible to construct a joint distribution of a vector of ωi that follows iCAR

as the covariance matrix (I − ρB)−1σ2 becomes singular (not positive definite).

• Simultaneous autoregressive (SAR) model:

A typical simulataneous autoregressive model for variable ωi presented in Eq.( 2.69)

is expressed as

ωi = µi +
n∑
j=1

bij(ωj − µj) + υi, i = 1, . . . , n, (2.79)

where the vector of residual errors υ =(υ1,. . .,υn)∼ N(0, Συ) with

Συ=diag(σ1,. . .,σn). From the literature the Eq. (2.79) is called the simultaneous

autoregressive model, where the word simultaneous refers to the simultaneous ap-

plication of the equation to each ωi of area i. Further details on SAR and CAR

models and their similarities can be found elsewhere (e.g. Waller & Gotway (2004);

Banerjee et al. (2004)).
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2.5.2.3 Convolution priors

When both global and local borrowing of information are included within the same

Poisson model through the introduction of both exchangeable and CAR random ef-

fects for each area, the specification originates the Besag-York-Molliè (BYM) model

expressed as follows

yi|mi ∼ Poisson(Eimi), log(mi) = β0 + φi + ωi (2.80)

where φi ∼ N(0,σ2
φ) and ωi | ω−i ∼ N(µi+

ρ
Ni

∑n
j=1 bij(ωj-µj),σ

2
i ), respectively. Over

decades, it has become the most popular choice in disease mapping especially when

estimating relative risks in small areas or adjusting for covariates effects. Although

BYM is quite flexible, its related problem is that the structured and unstructured

components are not easily identifiable from each other. For identifiability purposes,

some care is required in assigning hyperprior distributions to the conditional variance

(σ2
i ) and the marginal variance (σ2

φ). For instance, if noninformative hyperpriors are

assigned to both hyperparameters, then only the sum of the random effects (φi+ωi),

and not their individual values, will be identified. As a rule of thumb, it is suggested

to choose the prior marginal standard deviation of φi to be approximately equal

to 1.4 fold the conditional standard deviation of ωi (Gelfand et al., 2010). Other

alternative model formulations to overcome identifiability between unstructured and

structured random effects include Leroux and Dean models (Riebler, Srbye, Simpson,

& Rue, 2016).

2.5.3 Multiple diseases mapping

Thus far, we have reviewed some modelling methods applicable to areal counts of a

single disease. However, it is quite often possible to encounter situations whereby

counts of multiple diseases are observed over the same study domain. Diseases ob-

served over the same regions may relate in different ways. For instance, they may

have some common risk factors or the presence of one disease is a precursor of an-

other disease or it may obstruct the presence of another. With univariate models, it

is impossible to explore correlation structures across diseases. Thus, a multivariate

spatial modelling approach will be appropriate when multiple diseases are present

over a study region as it does not only allow modelling of dependence among those
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diseases, but also it maintains spatial dependence between areal units. To this end,

various ways have been used to model jointly multiple diseases. Some of the tech-

niques found in the literature include the separable modelling based on specification

cross-covariance functions (e.g. spatial regression models, cokriging); coregional-

isation modelling (e.g. intrinsic specification); shared component modelling; and

multivariate Conditional autoregressive (MCAR) modelling approach (Banerjee et

al., 2004). In subsequent paragraphs, we briefly review multivariate CAR and shared

component modelling approaches.

2.5.3.1 Multivariate conditional autoregressive (MCAR) modelling

For decades, conditional autoregressive modelling specifications have been exten-

sively applied to analyse mostly univariate cases of spatial data. Gelfand & Vounatsou

(2003) generalised the univariate CAR to multivariate conditional autoregressive

models. The generalisation was achieved by introducing spatial autoregression pa-

rameters to ensure the distributional propriety under a separability assumption,

which allows to model between diseases correlations as well as the spatial depen-

dence across space.

Let yik be the count of cases of disease k in the areal unit i of region D, i = 1, . . . , I,

j = 1, . . . , p, Eik be the expected count of cases for disease k in the areal unit i, and

mik be the relative risk for contracting the disease k in the area i. The first level of

the hierarchical model is expressed as follows.

yik|mik ∼ Poisson(Eikmik), (2.81)

where log (mik)= βj+φik (assuming no covariates in the model), βj is a disease

specific parameter coefficient, and φik is a random effect associated with disease k in

the area i. Under the separability assumption, the association structure separates

into a nonspatial and spatial component (Gelfand et al., 2010). That is, the joint

distribution of φ is assumed to be

φ ∼ Nnp(0, [Λ⊗ (D − αW )]−1), (2.82)
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where φ = (φ́1, . . . , φ́p)́, φj = (φ́1j, . . . , φ́Ij )́, Λ is a p × p positive definite matrix,

which represents the nonspatial precision matrix between p diseases (i.e. inverse

dispersion), ⊗ denotes the chronecker product, W is a proximity matrix with ele-

ments wij (measure the closeness of areas i and j), D is a diagonal matrix with ith

diagonal element equal to
∑

j wij, and α ∈ [0, 1] is a spatial autocorrelation param-

eter, which ensures the propriety of the joint distribution. The distribution in Eq.

(2.82) is denoted as MCAR(α,Λ). If α = 1, the distribution simplifies to improper

MCAR denoted by MCAR(1,Λ) and referred to multivarite intrinsic autoregressive

model(MIAR).

By letting RjŔj = D − αW , j = 1, . . . , p, the MCAR(α,Λ) can be generalised

to accommodate different smoothing parameters for each disease. The model be-

comes MCAR(α1, . . . , αp,Λ), which is expressed as

φ ∼ Nnp(0,
[
Diag(R1, . . . , Rp)(Λ⊗ In×n)Diag(R1, . . . , Rp)́

]−1

) (2.83)

2.5.3.2 Shared component modelling

For areal data, multivariate models are commonly employed with the main purpose

of introducing multiple dependent spatial random effects associated with areal units.

Apart from the MCAR modelling approach reviewed in the above section, other ap-

proaches include a twofold CAR model, shared component, and MCMC blocking

approaches which jointly model three sets of spatial random effects through three

independent CAR prior distributions in a shared component model setting. In this

section, we briefly reviewed the shared component approach.

The shared component model was pioneered by Knorr-Held & Best (2001). It splits

the disease profile into two components, namely the disease-specific component rep-

resenting spatially varying factors, and the shared component which is a proxy of

unobserved spatially varying factors that are common to both or all diseases (Knorr-

Held & Best, 2001). In situations where two or more diseases are observed on the

same areas, modelling them jointly is a better alternative way of disease mapping

instead of fitting a separate model for each disease.
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The model formulation given below follows the formulation of shared component

as presented by Knorr-Held & Best (2001). Let yik be the count of cases of disease k

(k = 1, 2) in the areal unit i of region D, i = 1, . . . , I and Eik be the expected count

of cases for disease k in the areal unit i, and mik be the relative risk for contracting

the disease k in the area i. The first level of the hierarchical models were expressed

as follows

yi1|mi1 ∼ Poisson(Ei1exp(mi1)) and yi2|mi2 ∼ Poisson(Ei2exp(mi2)) (2.84)

In the second stage, the log of relative risks are modelled as

mi1= λδi+φi1 and mi2= λ
1
δ
i +φi2.

The three components λδi , φi1, and φi2 were assumed to be independent. λδi is a

shared component and its contribution to overall relative risk is weighted by δ (scal-

ing parameter), and the other two components are disease specific components. In

this model, the mean of λ was assumed to follow a flat prior, whereas for the other

two components of the means were set to zero for identifiability purposes. The

variances of the three components were assigned inverse gamma priors. The scale

parameter, which allows a different gradient to be associated with the shared com-

ponent for each disease, assumed a prior with a zero mean and variance σ2
δ .

Ngesa (2014) adopted the shared component models to suit a Bernoulli process

and the following models were formulated.

log(pij1)= β1+λiδ+φi1 and log(pij2)= β1+ λi
δ i

,

where pijk is the probability of individual j in area i to get disease k.

In the subsequent paragraphs, the shared component models were adopted to suit

data for this study through the stochastic partial differential equations (SPDE)

modelling approach. Considering the bivariate model, which pools the two datasets,

let yij be a binary indicator of HIV incidence at location i from dataset ( j = 1, 2).

Then yij follows a Bernoulli(pij), pij is the probability of a recorded HIV incident

pertaining to the jth dataset.
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The bivariate model is then given by

logit(pi1) = β0 +
r∑
k

βkXi1k + f1(gi1) + z1(si), (2.85)

logit(pi2) = β0 +
r∑
k

βkXi2k + f1(gi2) + z2(si) + γz1(si), (2.86)

with j = 1 for NHSS and j = 2 for DHS where X is the vector of linear covariates

with corresponding regression parameters β;

gij is the vector of ages which are assumed to follow a random walk of order 1;

z1(si) is a Gaussian random field shared between both responses, and the interaction

parameter γ describes how much of the structure captured in z1(si) is also inherent

to the logit(pi2).

2.6 Conclusion

In summary, this chapter reviewed the basics of Bayesian modelling that include

different prior distributions and estimation methods. Also, it provided a review of

spatial and spatio-temporal modelling approaches of lattice and geostatistical data.

However, no review on spatial and spatio-temporal modelling techniques of point

patterns was considered in this dissertation. Furthermore, some current issues in

spatial and spatio-temporal modelling, which include the misalignment problem,

edge effects, and measurement error models were reviewed. Lastly, univariate and

multivariate disease mapping were reviewed with an inclination on only mapping of

lattice and geostatistical data.
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Chapter 3

Modelling spatial patterns of

misaligned disease data: An

application on measles incidence

in Namibia

1

Introduction

Quite often disease data are available in aggregated formats mostly to maintain

confidentiality. This leads to a misalignment problem when the goal is to analyse

risk at a different level of spatial resolution different from the original administrative

level where data were available.

Objective: To estimate and map the risk of measles at a sub-regional level in Namibia

using data obtained at a regional level.

Methods

Using measles data from Namibia for the period 2005-2014, both multi-step and di-

rect approaches were applied to correct for misalignment. Subsequently, ecological

Bayesian regression models were fit and compared.

Results

Results showed that the variables standardised birth rate, counts of measles cases

for previous year, unemployment rate and proportion of vaccinated children against

1Published as: (Ntirampeba, D., Neema, I., & Kazembe, L. (2017)
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measles by age 12 months were significant determinants of measles risk. Constituen-

cies having elevated measles risk were identified mostly in the northern corridor with

Angola.

Conclusion

We recommend that relevant authorities should make geographical target interven-

tion and redesign prevention and control strategies based on these findings.

3.1 Introduction

Measles is a disease caused by a highly contagious human pathogen that belongs

to the Paramyxoviridae family (Bhella et al., 2007). The disease spreads through

coughing, sneezing, near contact or direct contact with infected nasal or throat secre-

tions. It has an incubation period located between 9 and 12 days and an infectivity

period located between 4 and 9 days (Doungmo, Oukouomi, & Mugisha, 2014).

Deaths due to measles are quite common among malnourished children and people

whose immune system has been weakened by diseases that include human immun-

odeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Measles leads

to other complications such as blindness, brain swelling (encephalitis), diarrhoea,

ear infections and respiratory infection such as pneumonia. High death rates are

commonly registered in developing countries with low per capita income and poor

health service systems (WHO, 2014).

Worldwide, measles is ranked among the leading causes of mortality especially

among children in developing countries. For instance, in 2013, about 145,700 deaths

were recorded (WHO, 2015). Until now, there is no antiviral treatment for the

measles virus. Thus far, measles vaccination and supportive care that includes

good nutrition and adequate fluid intake have been used to fight measles (WHO,

2015). However, a reduction of global funding by the governments and partners

has largely affected the immunisation campaigns, which has hampered efforts for a

complete elimination of measles WHO (2014). Consequently, measles cases are still

reported in many countries, with Angola, Ethiopia, Namibia, Bosnia and Herzegov-

ina, Georgia, Sri Lanka and Philippines ranked among the top ten countries with

high annualised measles incidence per 100,000 inhabitants in 2014 (WHO, 2017).
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In Namibia, as in many countries, diseases surveillance data are often analysed

in the form of aggregated data at health district or regional level because of con-

fidentiality issues. However, health decisions might be needed at lower political

boundaries such as constituencies. Nevertheless, direct inference at such lower level

made on the basis of regionally aggregated data may lead to the spatial misalign-

ment problem (Banerjee et al., 2004).

In brief, spatial misalignment appears through various processes. The first pro-

cess is when the purpose of the analysis is to make inference about new points

based on available information at different points or locations. This is known as

point-to-point change of support. The second is when a researcher might be inter-

ested at predicting values at block level using information available at point level.

This is called the point-to-block change of support. In the third process, one might

seek to make inference from block values to point level, and this is referred to as

the block to point change of support (Banerjee et al., 2004). In this scenario, it is

inappropriate to infer about the relationships between variables at individual level

using information observed at area level, as the accuracy at area and point levels

is not a one-to-one relationship. This challenge is referred to as ecological fallacy.

Fourth, spatial misalignment can arise when the purpose of the spatial analysis is

the interpolation at new aggregation level that is different from a level where data

were observed. Scholars refer to this as the modifiable area unit problem.

Various methods for resolving misalignment have been proposed (Goovaerts, 2008;

Keil et al., 2013; Sturrock et al., 2014; Araújo et al., 2005; Lee & Sarran, 2015;

Finley et al., 2014; Illian et al., 2009). For instance, methods have been applied to

downscale the distribution of data from coarse to fine grain, and that include direct

method, point sampling method and hierarchical Bayesian method. These methods

have been adopted to deal with this scenario of misalignment (Keil et al., 2013;

Sturrock et al., 2014; Araújo et al., 2005). Other techniques have been developed to

deal with spatial misalignment that arises when the response variable is available at

bigger irregular shaped area units and covariates are available at smaller fine grids

(Lee & Sarran, 2015), in which a multi-step approach has been applied. In the case

78



where misalignment occurs with non-nested overlapping grids, hierarchical Bayesian

approaches have been employed (Banerjee et al., 2004; Finley et al., 2014). Recently,

the latter has been extensively applied as it permits to derive posterior predictive

distributions for both parameters and the epidemiological outcome of interest. It

is also suitable when dealing with multiple sources of uncertainty and it enables to

incorporate additional sources of information in the form of prior knowledge (Illian

et al., 2009).

The aim of this study was two-fold. First, the study aimed to identify constituencies

(sub-regions) in Namibia that have an elevated risk of measles and also to visualize

smoothed patterns of risk of measles. Second, the study aimed to determine factors

associated with the risk of measles in Namibia.

3.2 Methods

3.2.1 Sources of data

Measles cases were abstracted from the health management information system

(HMIS) database within the Ministry of Health and Social Services (MoHSS) in

Namibia. The database included all suspected measles cases from which positive

cases were extracted. Any patient consulting a health facility becomes a suspected

case if the patient is diagnosed with fever and generalised maculopular rash last-

ing for three days or longer, and a cough, coryza or conjunctivitis. Such a case

will be investigated and adequate blood specimen is collected and examined at the

Namibia Institute of Pathology (NIP). If the blood specimen is found to have sero-

logical confirmation of a recent virus infection, the case is classified as laboratory

confirmed. However, there are other cases wherein blood specimens are not taken

for serological confirmation, but they are linked to laboratory confirmed cases. Such

cases are known as epidemiologically confirmed. A suspected case is discarded if

it has been completely investigated or the blood specimen is declared by NIP as

not having serological evidence of recent measles virus. This determination of a

measles case is based on the World Health Organisation’s (WHO) standard defini-

tion, which considers a measles case as either an epidemiologically confirmed case
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or a laboratory confirmed case (WHO, 2015; Heymann, 2015). Although the HMIS

database has information from 2001 to partly 2015, the 2005−2014 period provided

consistent information for the entire country, and hence only data from this period

were considered in this study.

Covariates used in this study were obtained from the 2011 Namibia population and

housing census (NPHC) and the 2013 Namibia demographic health survey (NDHS).

The variables included proxies of social mixing patterns (average household size and

proportions of children attending pre-primary and schools), unemployment rates

and birth rates. Table 3.1 provides a list of all variables used in the analysis, as

identified through literature (Doungmo, Oukouomi, & Mugisha, 2014; Zagheni et

al., 2008; Held, Höhle, & Hofmann, 2005; Adika, Baralate, Agada, & Nneoma, 2013;

Jasem, Marof, Nawar, & Islam, 2012; Mayet et al., 2013; Beyene, Tegegne, Wayessa,

& Enqueselassie, 2016). Shapefiles that defined the administrative boundary maps

were also obtained from the Namibia Statistics Agency (NSA). Although the admin-

istrative boundaries have changed over time, in this study we have used the 2011

administrative boundaries that match with variables derived from the 2011 NPHC.

Table 3.1: Description of variables considered for the analysis

Variable Variable name

1 Standardised average household size
2 Counts of measles for previous year (2004)
3 Unemployment rates
4 Standardised birth rates
5 Proportions of children attending schools
6 Proportion of vaccinated children against measles by age 12 months
7 Proportions of children attending pre-primary

3.2.2 Statistical methods

Each of the 13 regions in Namibia is sub-divided into constituencies, giving a total

of 107 sub-regions. The counts of measles cases are available at 13 regions, of which

our aim was to estimate the risk at constituency level. This introduces the problem

of misalignment in the analysis. To overcome misalignment, two approaches (multi-

step and direct methods) are used.
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3.2.2.1 Multi-step approach

This method allows the allocation of region/district disease totals to constituency

proportional to the constituency area or population. However, the areal proportional

allocation method assumes that the population is uniformly distributed throughout

the entire area. Namibia is a semi-desert country, and its population is not spread

uniformly throughout the territory; rather, people are living in towns or settlements.

It has been shown that measles infection is proportional to the size of the popula-

tion in each location (Doungmo et al., 2014). Thus, the population proportional

allocation was applied. Steps of the multi-step method are as follows:

(i) Overlay constituencies on regions. This enables to determine exactly what pro-

portion of a given constituency is susceptible or infected by measles.

(ii) Find all total values of measles cases for all constituencies. The computation

of these values is based on the population proportional allocation concept, as it has

been shown to be more appropriate relative to areal proportional allocation for in-

fectious diseases (Doungmo et al., 2014). This is formulated as follows: yik =
pik
Pk
YK ,

where yik is the number of measles cases in the constituency i of region k; YK is the

number of measles cases in the kth region that contains the constituency i; pik is

the total population of constituency i included in the region k; and Pk is the total

population of the region k.

(iii) Apply spatial smoothing techniques to the computed measles cases. To this

end, we explored the Poisson and negative binomial hierarchical regression mod-

elling approach. These models are ideal for count data, and by applying hierarchical

models, we incorporate covariate information and any other sources of uncertainty

in the parameter estimation process.

The model formulation given below follows the formulation of nested block-level

modelling presented by Banerjee et al. (2004). In brief, let I be the number of con-

stituencies overlaid in a given region and K be the number of regions in Namibia, yik

the total measles count in the constituency i of region k, such that i = 1, . . . , I and

K = 1, . . . , K, nik is the population count in constituency i of the kth region, λ is
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the probability of contracting the disease. In this study, λ is assumed to be the 2014

Namibia annualised measles incidence per 100,000 inhabitants such that Eik = λnik

is the corresponding expected disease count for constituency i , mik is the relative

risk for contracting the disease in the constituency i , and Xik are covariates present

in constituency i.

The first stage model for disease counts is given by a Poisson such that

yik|mik ∼ Poisson(Eikmik), (3.1)

where

log(mik) = log(Eik) +XT
ikβ + φik + wik, (3.2)

where in Eq. (3.2) during the second stage of Bayesian hierarchical modelling, we

specify the distribution of mik as a function of the covariates (XT
ik) in the con-

stituency i for some fixed effects, β, and spatial random effects, φ and wik.

Alternatively, a negative binomial (NB) can be specified as

yik ∼ NB(nik, p) (3.3)

where

p = 1− exp[XT
ikβ + φik + wik] (3.4)

for yik = 0, 1, . . . and nik is the number of individuals at risk with a probability of

getting measles p. Similarly, in Eq.(3.4), p is modelled as a function of covariates

and some spatial random effects in similar a way as in Eq. (3.2).

Estimation of the models (3.2) and (3.4) follows a Bayesian inference approach.

As such, prior assumptions need to be specified. For fixed effect parameters β ,

weak informative Gaussian priors β ∼ N(0, τ−1I) with small precision τ on identity

matrix are assumed. The term, φik assumes a prior normal N(0, 1
τh

) and it controls

the global extra-Poisson variability in relative risks or captures constituency-wide

heterogeneity. This prior is also referred to as an independent and identically dis-

tributed (IID) prior, such that the effect φik for each constituency is independent of

all other constituencies.
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On the other hand, wik captures the extra-Poisson variation in relative risks that

vary locally (spatial clustering) and wik are assumed to be distributed according to

the intrinsic conditional autoregressive (ICAR) model. We specify the ICAR model

as follows

wik|wjk,i 6=j ∼ N(
1

ni

∑
ik

wik,
1

τni
), (3.5)

where τni and ni are the precision parameter and the number of neighbours of

constituency j respectively (Besag et al., 1991). Under this prior, the effect of wik

for each constituency is normally distributed with a mean effect equalling the average

effect of effects of neighbours of constituency i with τni precision. The neighbours

are defined in terms of constituencies sharing at least one point (queen adjacency).

τ ,τh, and τni assume inverse gamma prior distributions.

3.2.2.2 Direct approach

This is one of the models that are commonly used in ecology to downscale the

distribution of species from coarse scale to fine scale (Keil et al., 2013; Sturrock et

al., 2014; Araújo et al., 2005). The conventionally used direct approach (Keil et al.,

2013; Sturrock et al., 2014; Araújo et al., 2005) assumes that the cases distribution

at the fine scale (constituency level) is driven by the same processes as at the coarse

scale (regional/district level). Thus, the method fits a hierarchical spatial regression

model at coarse scale and then the estimated parameters are used in the spatial

regression at fine scale.

Specifically, in this study, we fit the following model

yi|mi ∼ Poisson(Eimi) (3.6)

log(mi) = log(Ei) +XT
i β + φi + wi (3.7)

where in model ( 3.7) the distribution of the relative risk mi was specified as a

function of the covariates XT
i ( mean values of covariates at constituency level) in the

region i for some fixed effects, β, and some spatial random effects, φi (unstructured

spatial random effect), and wi (structured random effect). The prior and hyper-prior

distributions were specified in the same way as in the aforementioned multi-step
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approach. The fixed effects β are then used directly in Eq. (3.8) in order to predict

the specific constituency relative risk mik through the following equation

log(mik) = XT
ikβ (3.8)

To predict the number of cases in a given constituency (fine scale level), values ob-

tained from model (3.8) will be fed in the following model:

yik|mik ∼ Poisson(Eikmik) (3.9)

3.3 Results

3.3.1 Exploratory analyis

Before fitting the models to the data, we explored the issues of multicollinearity and

spatial autocorrelation that may arise in the data. Firstly, a multicollinearity is a

condition that happens when independent variables are highly correlated. This con-

dition affects the estimated regression coefficients of independent variables, as their

sampling errors tend to be large. Many scholars still insist that there is no clear

critical value of correlation among independent variables to signal multicollinearity

(Keller, 2012). A common way to measure multicollinearity is to use the variance

inflation factor. Generally, the multicollinearity between independent variables is

regarded to be severe if the largest variance inflation factor is greater than 10.

To avoid multicollinearity, we ran a correlation analysis for the variables (Table

3.1) and computed the variance inflation factor. It was found that the variables

standardised average household size and proportions of children attending schools

(r = 0.652), proportions of children attending schools and proportions of children

attending pre-primary (r = 0.6452), and standardised average household size and

proportions of children attending pre-primary (r = 0.552) were highly correlated.

The variance inflation factor was 11.5. Consequently, only the variable standardised

average household size as a proxy of social mixing was used. We then fitted 12

models, which are summarized in Table 3.2. The first three models are for both

Poisson and negative binomial distributions that assume the variability in measles
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incidences is solely due to spatial random effects.

Secondly, we used the global Moran’s I statistic determine the overall strength

of spatial dependence. This statistic is a useful measure of the overall clustering.

The global Moran’s statistic was 0.157 (p-value=0.0048) with a variance of 0.00415.

Thus, this positive significant Moran’s I value implies that values in neighboring

constituencies tend to cluster. To detect local spatial patterns, we have used local

Moran’s I. It enhances to identify clusters, which are observations with very similar

neighbours and hotspots, which are characterised by observations with very differ-

ent neighbours. Fig. 3.1 (a) shows the map of local Moran’s I statistics. From this

figure, it can be noted that constituencies in Opuwo have elevated positive Moran’s

I values. Fig. 3.1 (b) shows the probability values associated with local Moran’s I

statistics. It indicates the constituencies in Opuwo have significant local Moran’s I

values. These results have inspired the spatial analysis undertaken in the subsequent

sections.

Figure 3.1: Distributions of (a)local Moran’s I (observed) values and (b)probability
values of Moran’s I for all constituencies
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3.3.2 Model selection

Model 1 explores only IID random effects. Model 2 assumes for each region a spa-

tially structured random effect through ICAR model known as the Besag model.

The third model (Model 3) is the convolution model that assumes for each region

two components of random effect, namely, unstructured IID and ICAR; in other

words, this is a Besag-York-Mollie (BYM) model. The other three models for both

distributions were obtained by adding covariates to models 1-3 in order to assess

effects of covariates on the risk of measles. The best model was identified using the

deviance information criterion (DIC). The DIC is given by DIC = D + 2p, where

D the deviance is evaluated at the posterior mean and p is the effective number of

parameters. By the rule of thumb, the best model is one with the smallest DIC.

The significance of parameters was assessed using credible intervals. Generally,

if a credible interval for θ does not contain zero, then the parameter is statistically

significant. In Bayesian setting, a 100(1 − α)% credible interval for θ is an inter-

val (a, b) such that (a ≤ b | o1, . . . , on) > (1 − α)100% , where α is a small value

between 0 and 1, and o1, . . . , on are observed sample values. It is the analog of

confidence interval in the classical approach. When data have been observed, the

credible interval is fixed, while θ is random. This is in dissimilarity to the classical

confidence interval where the interval is random while θ is a fixed parameter. The

interpretation of a credible interval is different from the one of the classical interval.

In the Bayesian paradigm, the credible interval is interpreted as “the probability

is at least (1 − α)100% that θ lies within the interval(a, b)”. In classical approach,

the confidence interval is interpreted as “(1− α)100% of all such intervals(a, b) will

contain the true parameter θ”. To estimate Bayesian posterior marginal distribu-

tions and any other posterior inferences for all the 12 models, the integrated nested

Laplace approximation (INLA) approach was used. Model fitting was carried out

in R statistical software (R Core Team, 2017).

Table 3.2 shows that Models 2 and 3 (Poisson models), which took into account

the random spatial variation, are the best competing models (DICs : 849.95 and

850.07, respectively) among those that did not include covariates. This reveals the
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presence of spatial clustering or correlation in measles risk. After adding covariates

in models, it was noted that Models 5 and 6 were equally good fitting for these data.

Model 5 was used to generate the relative risks (RR) for contracting the measles

virus and the probabilities to assess constituencies with elevated relative risks.

Table 3.2: Summary of models fitted to measles data for Namibia and their corre-
sponding DICs

Poisson models
Model spatial component Fixed D pd DIC

1 IID - 657.58 99.43 856.44
2 ICAR - 661.07 99.44 849.95
3 CAR - 660.93 94.57 850.07
4 IID All covariates 658.15 97.93 854.01
5 ICAR All covariates 662.3 93.27 848.84
6 CAR All covariates 662.4 93.29 848.94

Negative binomial
models
1 IID - 1081.72 1.96 1085.64
2 ICAR - 939.14 43.15 1025.44
3 CAR - 938.78 43.42 1025.62
4 IID All covariates 1060.39 6.93 1074.25
5 ICAR All covariates 939.47 42.06 1023.59
6 CAR All covariates 941.41 41.16 1023.73

3.3.3 Fixed effects

Table 3.3 presents a summary of fixed effects for all variables included in the model.

In summary, from 95% credible intervals, we observed that the standardised birth

rates, counts of measles for previous year (2004) and unemployment rates had sig-

nificant positive effects on measles incidence, whereas the proportion of vaccinated

children against measles by age 12 months had significant negative association with

risk of measles. However, the standardised average household size did not show any

significant association, although this was positively related to the risk of measles.
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Table 3.3: Summary of models fitted to measles data for Namibia and their corre-
sponding DICs

Fixed effects Posterior mean Standard deviation 95%

Standardised average
household size 0.0523 0.063 (-0.072,0.176)
Counts of measles for
previous year (2004) 0.017 0.006 (0.0043,0.0294)
Unemployment rates 0.007 0.003 (0.0011,0.0129)
Standardised birth rates 0.143 0.048 (0.0494,0.2364)
Proportion of vaccinated
children against
measles by age 12 months -0.005 0.003 (-0.0099,-0.0001)

3.3.4 Spatial distribution of measles relative risks

Figure 3.2: Distributions of constituency specific relative risks obtained from:
(a)Multi-step approach and (b)Direct approach

In disease mapping, the most important aspect is to determine the areas with excess

risks. Maps (a) and (b) in Fig. 3.2 show the distributions of constituency specific

relative risks obtained from the multi-step approach and direct approach, respec-

tively. Map (a) (Fig. 3.2) indicated that the Kunene region has constituencies with

high residual relative risks, whereas map (b)(Fig. 3.2) showed that Epupa (Kunene),

Mungu and Mukwe (Kavango), Guinas and Tsumeb (Oshikoto) and Omatako and

Okahandja (Otjzondjupa) constituencies had high relatives.
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Figure 3.3: Boxplot of standardised residuals obtained from the direct and multi-
step approach models
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3.3.5 Modelling approach comparison

While the multi-step modelling approach provides a DIC statistic, the direct method

does not provide such statistic. Thus, the comparison of the models resulting from

these modelling approaches cannot be achieved through a DIC statistic. The analysis

of residuals has been used as an exploratory tool to assess which model performs

better. Fig. 3.3 gives a boxplot of standardised residuals obtained from the direct

and multi-step approach models, respectively. This figure indicates that the multi-

step approach model provides lower median standardised residuals. In addition,

the models were compared using the root mean square error (RMSE) statistic. It

was found that the RMSE associated with the multi-step approach model was small

relative to one of the direct models (i.e. 6.40 versus 6.60), thus confirming the

boxplot results that the multi-step approach model provided a relatively better

model.

3.4 Discussion

The main aim of this study was to use aggregated data obtained at regional level

to estimate and map the risk of measles at a lower level (constituency level). To

achieve this, we corrected for spatial misalignment using both direct and multi-step

approach methods. Subsequently, a spatial Poisson regression model was applied to

explain the variation of measles risk in Namibia. The model thus developed included

socio-economic covariates that explained the risks of measles in Namibia.

Findings showed that the measles risk varied remarkably (3.2). Using either the

direct or multi-step approaches, constituencies of high risk were observed along the

borders with Angola, notably in Kunene region (i.e. Opuwo, Sesfontein, Khorixas,

Kamanjab and Outjo constituencies) and Kavango region (i.e. Epupa, Mukwe and

Mpungu constituencies). This could be due to the free movement of people to and

from Angola, whereby visits to Angola may expose the nonimmunised to the dis-

ease (Zagheni et al., 2008; Held et al., 2005). In addition, using the multi-step

approach, high-risk areas can be identified in Hardap and Ohangwena regions. Reg-

ular surveillance of population movement may assist in controlling the risk of the
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disease, particularly regular border checks and targeted vaccination of children in

the areas identified as high risk or along all border areas.

Furthermore, results showed that covariates like the previous counts of measles,

standardised birth rates and unemployment rates were associated with increased

measles risk. Such findings are similar to what was obtained elsewhere, and they

are typical of contagious diseases like measles (Doungmo et al., 2014; Araújo et

al., 2005; Zagheni et al., 2008; Jasem et al., 2012; Mayet et al., 2013; Ma et al.,

2014), and confirm that contact is critical at sustaining transmission and that large

households are at increased risk (Araújo et al., 2005; Ma et al., 2014). Existing

reservoirs of the disease are a major source for maintaining the transmission to the

subsequent year. Any surveillance programme should try to eliminate as much as

possible any putative source of transmission. Further, there is clear evidence that

poor households and neighbourhoods, as measured by unemployment rate, are the

most vulnerable. Pathways of transmission are not quite clear within poor house-

holds and neighbourhoods, but they may reflect heightened contacts of the infected

and the susceptible, thus fuelling multiple infections.

We also found that vaccination reduced the risk of the disease. In fact, vaccination

coverage is reported to be 90% among children aged 12−23 months countrywide

(MoHSS, 2013). It is therefore imperative that existing policies such as supple-

mentary vaccination campaign every three years or in cases of measles outbreaks

in Namibia should be maintained. Furthermore, Namibia may need to improve the

delivery of measles vaccines by for example borrowing and improving the standard

protocol of systematic reminder/recall interventions by telephone or post, which

has been proven to be an effective strategy in increasing measles vaccination cover-

age (Filia et al., 2013). Otherwise, improper vaccination procedures and any other

vaccine-related factors may cause the resurgence of measles (Jasem et al., 2012).

The failure to vaccine all susceptible persons remains an obstacle to measles elimi-

nation, as studies have shown that the measles virus can still travel along the chains

of transmission among vaccinated persons and infect unvaccinated people or peo-

ple who have not acquired immunity by recovering from the disease (Ma et al., 2014).
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Studies have further shown that care-seeking patterns are among the reasons of

missing measles vaccination and the under-reporting of measles cases (Jasem et al.,

2012; Filia et al., 2013). Although the existence of factors that may affect care-

seeking patterns is acknowledged within the MoHSS in Namibia, there are no data

documenting factors affecting care seeking. Thus, there is a need of a study on care-

seeking patterns for measles which can inform better strategies of measles control.

A number of significant weaknesses of this study are acknowledged. Firstly, the

use of aggregated data over the period of 2005−2014 would not allow the observa-

tion of any possible seasonality effects, which are quite common in infectious and

contagious diseases like measles. Thus, the temporal effects were implicitly masked.

Secondly, the accuracy of health information data constitutes a major concern to

some extent. Currently, the HMIS database in the Ministry of Health and Social

Services does not integrate data from all the MoHSS programmes and it does not

routinely capture some critical child programme data (De Savigny et al., 2004). In

addition, the accuracy of information may depend on the level of utilisation of health

facilities, which in turn is influenced by the accessibility, perceived health service

quality and health care seeking behaviour among many other factors (Adika et al.,

2013; MoHSS, 2014a; De Savigny et al., 2004). As a result, many cases of measles

are never reported to the health management system. Such under-reporting may

somehow distort the geographical pattern of disease risk (Filia et al., 2013). Nev-

ertheless, the spatial smoothing approach used in this study may have attenuated

an aberrant in the measles risk spatial distribution(Doungmo et al., 2014; Lee &

Sarran, 2015). Thirdly, this study has assumed that the covariates did not change

in the period of ten years. Thus, the interpretation of the study findings should take

into account this limitation.

In conclusion, the epidemiological implication of this study is that regional aggre-

gated data may represent a useful data for policy and decision making at lower level,

provided appropriate statistical models are developed and applied. This presents an

important tool for the health sector to plan, evaluate and redesign prevention and

control strategies, and make important policy decisions particularly for geographi-

cally targeted intervention in resource poor settings.
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With regards to the statistical models presented here, particularly for the multi-step

approach, many extensions to the fitted model are possible and they include those

that can account for the temporal effects and measurement errors (Besag et al.,

1991).
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Chapter 4

Modelling spatio-temporal

patterns of disease for spatially

misaligned data: An application

on measles incidence data in

Namibia, 2005-2014

Background

Making inferences about measles distribution patterns at a small area (such as con-

stituency level) is vital for more focal targeted intervention. However, in Namibia

the measles data were available in aggregated format at regional level over the pe-

riod 2005 to 2014. This leads to a spatial misalignment problem if the purpose is to

make decisions at constituency level. Moreover, data on covariates of measles were

not available each year between 2005 and 2014. Thus, assuming that covariates were

constant through the study period would induce measurement errors which might

have effects on the analysis results. This study presents a spatio-temporal model

through a multi-step approach in order to deal with misalignment and measurement

error.

Methods

For the period 2005-2014, measles data from MoHSS was analysed in two steps.

First, a multi-step approach was applied to correct spatial misalignment in the
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data. Second, a classical measurement error model was fitted in order to account for

measurement errors. The time effects were specified using a nonparametric formu-

lation for the linear trend through first order random walk. An interaction between

area and time was modelled through identically independent non-informative nor-

mal prior.

Results

The study showed that there was a high variation in measles risk distribution across

constituencies and as well as over the study period (2009-2014). Furthermore, the

risk of measles was found to be associated with (i) the number of people aged between

0 and 24 years, (ii) the percentage of women aged 15-49 years with an educational

level more than secondary, (iii) the percentage of children aged 12-23 months who

received the measles vaccine, (iv) the percentages of malnourished children under 5

years, and (vi) the measles cases for each previous year.

Conclusion

The study showed some of the determinants of measles risk and revealed areas at

high risk through disease mapping. Additionally, the study showed a non-linearity

temporal distribution of measles risk over the period of study. Finally, it was shown

that ignoring the measurement errors may yield misleading results. It was recom-

mended that group and geographically targeted intervention, prevention and control

strategies can be tailored on the basis of these findings.

4.1 Introduction

Measles is among the most transmissible of human infections, which is caused by a

virus which is a member of the genus Morbillivirus of the family of Paramyxoviridae

(Bhella et al., 2007) and it is known to attack any persons, via airborne droplets,

who have not had the disease or been successfully immunised (Heymann, 2015). It

has an incubation period of 7 to 18 days from exposure to onset of fever (Heymann,

2015). Although the measles vaccine has been available for the past five decades,

measles has remained one of the leading vaccine-preventable killer diseases among

children especially in developing countries with low incomes per capita and poor

health service systems (Heymann, 2015; WHO, 2014). In communities and areas
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where the immunisation is not widely spread, more than 90% of people are infected

by the age of twenty. Because there is no antiviral treatment for the measles virus,

vaccination and supportive care, such as good nutrition and adequate fluid intake,

are mainly used to fight measles (WHO, 2015).

The goal of elimination of measles has been reached in countries of the Pan American

Health Organisation (PAHO) through measles vaccine and careful measles surveil-

lance. In other parts of the World Health Organisation (WHO), the complete elimi-

nation goal of measles is still to be reached with Africa and South-East Asia having

set their target for 2020 (Heymann, 2015). Consequently measles cases are still

reported in many countries (WHO, 2017). Various studies have shown that the

distribution of measles risks vary quite often spatially due to different risk factors

such as the level of immunisation, susceptible population and many other socio-

economic indicators (Chiogna & Gaetan, 2004; Zhu et al., 2013). Maps resulting

from spatio-temporal analysis of variations in measles incidences are often used to

identify changes over time and areas of a region or a country with most disease oc-

currences in order to plan for a proper intervention and targeted distribution of aid

to most affected areas (Zhu et al., 2013). They are indeed regarded as useful tools for

geographically targeted interventions, and monitoring and evaluation of infectious

diseases such as measles. However, because of confidentiality issues, spatio-temporal

analyses of disease surveillance data, such as measles data, are often presented in

aggregated form over time or at an area. Nevertheless, health decisions might be

needed at lower administrative boundaries other than the levels where data were

originally collected.

In the statistical literature, direct inferences at such levels which are made on ba-

sis of the original level of aggregation lead to a complication known as a modifiable

areal unit problem (misalignment) (Finley et al., 2014). Moreover, many researchers

do not account for measurement error despite the awareness of its presence and po-

tential effects on analysis results (Buonaccorsi, 2010). Such studies assume that

surrogate variables are the same as the variables of interest. Research has shown

that ignoring measurement errors may, for example, lead to masking some important

features of data, losing power of hypothesis testing among variables, and introducing
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bias in estimates (Wattanasaruch et al., 2012).

In this study, we used measles incidence data aggregated to the regional level in

Namibia during 2005-2014 to fit spatio-temporal models, which would help to iden-

tify constituencies ( lower level of regions) at high risk, as well as to visualise

smoothed patterns of measles risk. Furthermore, the study aimed to determine

factors associated with the distribution and the dynamics of measles in Namibia

while accounting for measurement error that might be present in the covariates.

4.2 Methods

4.2.1 Settings

From the 2011 Namibia population and housing census (NPHC), the Namibia popu-

lation stood at 2113077. Due to the presence of the arid Namib Desert, the popula-

tion densities vary substantially among the regions with about more than two-thirds

of the population estimated to live in the northern regions whereas less than one-

tenth lives in the south.

4.2.2 Data

Data on reported measles cases over contiguous regions in Namibia are available

from the Ministry of Health and Social Services (MoHSS) database for the period

2001 to 2014. Due to the improvement of the Namibia surveillance health system,

the period of 2005-2014 provided consistent information for the entire country and

hence only data from this period were considered in this study. The database in-

cluded all suspected measles cases from which confirmed cases were extracted. A

suspected case is any person with fever and maculopapular generalised rash and

cough or red eyes. Whereas a confirmed case is any suspected case with laboratory

confirmation or epidemiological links to confirmed cases in any outbreak (Heymann,

2015). In this study, the determination of a measles case followed the WHO stan-

dard definition, which considers a measles case as either a clinically confirmed case

or an epidemiological linked case or a laboratory confirmed case (Heymann, 2015).
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The following variables were considered as covariates in the model, each measured

at constituency level.

(i) Number of people aged between 0 and 24 years, which represents the proxy of

the size of susceptible group (Chiogna & Gaetan, 2004) for each constituency,

(ii) Employment rates,

(iii) Percentages of children aged 12-23 months who received measles vaccine (Vac-

cination coverage),

(iv) Educational attainment of female household population (percent of women aged

15-49 years with an educational level more than secondary),

(v) Percentages of malnourished children under 5 years,

(vi) Measles cases for each previous year were treated as the determinant factor of

the subsequent year.

Table 1 gives the description of the variables used for this study. Administrative

boundary maps were obtained from the Namibia Statistics Agency head office.

Table 4.1: Description of variables considered for the analysis

Variable Description Min,max Source

Edu Percentage of women 2.7; 24.4 2013 NDHS
aged between 15-49 years with
an education more than secondary

PrevCase Count of measles 0; 207 MoHSS
for previous year

EmployR Employment rates 28; 92.9 2011 NPHC

LST Number of people 2691; 26605 2011 NPHC
aged between 0 and 24 years

Vacc Percentages of children 75; 98.7 2013 NDHS
aged 12-23 months who
received measles vaccine

Malnou Percentages of children under 0.9; 5.7 2013 NDHS
5 years classified as malnourished
according to anthropometric index of
nutritional status (weight-for age: %below − 3SD)
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4.2.3 Statistical methods

The counts of measles cases were available at regional level and the aim of this study

was to estimate the relative risk of measles at constituency level. If the data are to

be analysed at regional level with the purpose of making decisions at constituency

level a misalignment is introduced in the analysis. To overcome misalignment, a

multi-step approach discussed in Ntirampeba, Neema, & Kazembe (2017) was used.

Briefly, the multi-step approach fundamentally involves two steps. First, a total

count of measles cases for constituency i is computed using the population propor-

tional allocation of cases. Thereafter, the hierarchical smoothing techniques are used

to estimate the relative risk of measles. In this study, the number of measles cases

in the constituency i of region k in year j was computed as yikj =
Pikj
Pkj

Ykj, where

Ykj is the number of measles cases in the kth region for year j that contains the

constituency i; Pikj is the total population of constituency i in the region k during

year j; and Pkj is the total population of the region k in year j.

A Poisson hierarchical regression model was used to estimate the spatial and tem-

poral dynamics of measles in Namibia. Thus, the following distribution for the

computed measles cases was specified

yikj | mikj ∼ Poisson(Eikjmikj), (4.1)

where Eikj is the expected disease count for constituency i in the kth region for year

j, and mikj is the relative risk for contracting the disease in the constituency i of

region k during the year j.

The focus in the analysis is on the form of the regression model for the log rel-

ative risk (mikj), which is specified as a function of fixed effects (i.e. covariates,

where some of the covariates might not be directly observed, in the constituency i

for year j), spatial random effects, temporal effects, and spatio-temporal interaction

effects.
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4.2.3.1 Fixed effects modelling

The fixed effects were modeled as a linear combination of covariates available in

constituencies for each year. That is XT
ikjβ, where for fixed effect parameters β,

a weakly informative Gaussian priors β ∼ N(0, τ−1
β I) with small precision τβ on

identity matrix were assumed. Alternatively, uniform vague priors may be assumed

for β.

4.2.3.2 Spatial random effects modelling

The spatial trends were modelled as a sum of constituencies heterogeneities and

spatial clustering effects. For the wide constituency heterogeneity (unstructured

spatial random effects), φikj, an independent and identically distributed prior (IID)

was assumed such that φikj ∼ N(0, 1
τφ

). This spatial random effect controls globally

the extra-variability in the log relative risks or probability of success. Under this

prior, the effect φikj for each constituency is independent of all other constituencies.

For the structured spatial random effects, ωikj, we assumed a Besag-York-Mollie

specification (Besag & Green, 1993) such that ωikj is modelled using an intrinsic

conditional autoregressive structure model (ICAR).

ωijk | ωíjk 6=ikj ∼ N(
1

Ni

∑
i

ωikj,
1

τωi
), (4.2)

where τωi and Ni are the precision parameter and the number of neighbours of

constituency i. Under this prior, the effect of ωijk for each constituency is nor-

mally distributed with mean effect equals the average of effects of neighbours of

constituency i and τωi precision. With this model, the adjacency matrix was used

to characterise the spatial relationships between constituencies. The neighbours are

defined in terms of constituencies sharing at least one point (queen adjacency) and

the weight is set to be one if two constituencies are neighbours, otherwise the weight

equals zero (Besag & Green, 1993). The priors for the precisions of both unstruc-

tured and structured spatial random effects were assumed to be non-informative

gamma distributions.
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4.2.3.3 Temporal and time-space interaction effects modelling

The time effects can be modelled using time as a categorical variable through the

introduction of dummy variables; using cubic splines (Dwyer-Lindgren et al., 2014);

using parametric linear trends and using nonparametric formulations to relax the

assumption of linear trends through random walk models (Dwyer-Lindgren et al.,

2014; Blangiardo et al., 2013). In this study, we opted to specify the time effects

using a nonparametric formulation for the linear trend through first order random

walk and a Gaussian exchangeable prior.

γt | γt−1 ∼ N(γt−1, σ
2
γ), for t = 1 (4.3)

θt ∼ N(0,
1

τθ
), (4.4)

where γt and θt represent structured (through neighbourhood structure) and un-

structured temporal effects, respectively. An interaction between area and time is

modelled by expanding the temporal effects through the addition of an interaction

term (δit). This interaction term explains the differences in time trend for different

areas (i.e. constituencies). There exists various specifications for this term (Blan-

giardo, Cameletti, Baio, & Rue, 2013; Restrepo, Baker, & Clements, 2014). In this

study, an identically independent non-informative normal prior was used.

δit ∼ N(0, σ2
δ ) (4.5)

Non-informative gamma prior for σ2
γ and σ2

δ were assumed. By combining fixed

effects, spatial effects, temporal effects, and space-time interaction effects together,

we obtained the regression model for the log relative risk as shown.

log(mikj) = log(Eikj) +XT
ikjβ + φikj + ωikj + γt + θt + δit (4.6)

4.2.3.4 Measurement error models

Fundamentally, the specification of a measurement error model is based on an as-

sumption about the distribution of the observed values given the true values or vice

versa (Buonaccorsi, 2010). For the classical measurement error model, the distri-

bution of the observed values given the true values is specified, while for the latter

specification is referred to as the Berkson error model. That is, the classical mea-

surement error model is expressed as P (W = w | x), while the Berkson error model
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is given by P (X = x | w), where X and W are the true and observed covariates,

respectively. In this study, the errors in covariates were modeled using an addi-

tive non-differential classical measurement error model with respect to the response

variable. In other words, the measurement error model does not depend on the

value of the response variable and w | x = x + u. In this case, w are observed

values of the true but unobserved covariates X (i.e. W s are surrogate of Xs). The

error term u assumed a Gaussian prior with a zero mean and a covariance matrix

C = τuD(i.e.u N(0, C)), where τu is the precision of the error term and D is a diag-

onal matrix of fixed scaling values (di) of the observational precision. By including

the error model in the Eq. 4.6, the regression model for the log relative risk becomes

log(mikj) = log(Eikj) +XT
ikjβ +W T

ikjβ̃ + φikj + ωikj + γt + θt + δit, (4.7)

where W T
ikj = X̃ijk + u is a vector of adjusted mismeasured covariates obtained

by applying a classical measurement error model on X̃ijk ( observed mismeasured

values); and β̃ is the vector of corresponding parameters. Details on measurement

error models can be found elsewhere (e.g. Buonaccorsi (2010); Gustafson (2004)).

4.2.4 Analysis of measles data

A preliminary descriptive analysis of confirmed measles cases was performed to gain

insight about the shifts of measles’ yearly incidence (Fig. 4.1). Poisson models (Ta-

ble 4.2) were built in Bayesian modelling framework using R-INLA. The first three

models assumed spatial random components as the only sources of variability in the

risk of measles. In these models, unstructured and structured random effects were

considered.

For the unstructured random effects model (Model 1), the spatial trend includes

II D random effects. Two models for the structured random effect for constituencies

were considered. Model 2 assumes for each region a spatial random effect that is

distributed as a function of the mean effect of regions in neighbourhood (ICAR)

and Model 3 is a convolution model that assumes for each region two components of

random effect, namely, specific region random effect (specific region heterogeneity)

and structured random effect (random effect due to clustering). These models were
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extended by adding covariates and spatio-temporal component in parametric for-

mulation fashion that assumes linearity in the global time effect and the differential

trend for constituency and time (Models 4-11). To relax the assumption of linearity

in constituency-time component, a non-parametric model was employed. In addi-

tion, error models were used for some variables in order to correct for mismeasuring.

All models fitted in this study are summarised in Table 4.2.

The best model was selected using the deviance information criterion (DIC) given

by DIC = D + 2p, where D is the deviance evaluated at the posterior mean and p

the effective number of parameters in the model. The rule of thumb indicates that

the best model is one with the smallest value of DIC. The summary statistics of

the best model is presented in Table 4.3.
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4.3 Results

4.3.1 Exploratory results

A total of 9923 cases were recorded for the period 2005-2014 in 13 regions in Namibia.

Low records were observed for the first five years. Fig. 4.1 presents the spatio-

temporal distribution of measles incidence rates in Namibia for the period 2005-

2014. The regional distributions of measles incidence rates for each are shown.

From Fig. 4.1, it appeared that there existed great variation in measles occurrence

over the 13 regions and as well as over the study period. In four regions, namely

Kavango, Khomas, Kunene, and Ohangwena, high measles incidence rates were ob-

served through the study period. The regional and temporal variability in measles

occurrence depicted by this figure has motivated the spatial-temporal analysis un-

dertaken in this study.

Figure 4.1: Measles incidence rates in Namibia for the period 2005-2014
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4.3.2 Fixed effects

Table 4.2: Summary of models fitted to measles data for Namibia and their corre-
sponding DICs

Poisson model Spatial component fixed effects D p DIC

1 ICAR - 14617.09 94.73 14806.55
2 CAR - 14616.81 94.96 14806.73
3 IID - 14613.48 99.71 14812.9
4 ICAR All covariates 13169.10 152.88 13474.86
5 CAR All covariates 13168.99 152.99 13474.97
6 IID All covariates 13170.76 166.18 13503.12
7 ICAR All covariates 7528.99 104.50 7737.99
8 CAR All covariates 7528.9 104.55 7528.9
9 CAR All covariates 3767.06 619.18 5005.42

+time-space interaction
10 ICAR All covariates 3765.67 620.5 5005.77

+time-space interaction
11 CAR All covariates 3765.54 619.21 5000.88

+time-space interaction
+measurement error

Based on DIC values, Model 9, which included all covariates, unstructured and struc-

tured random effects, and time-area interaction term, emerged the best fit among

fitted näıve models for this data (Table 4.2). By including error models in the co-

variates (LST and Malnou), the Model 11 performed better than Model 9. Thus, a

summary of results of this model is presented in Table 4.3. Based on the 95 % cred-

ible interval, the percent of women aged 15-49 years with an educational level more

than secondary, the number of people aged between 0 and 24 years, the percent-

ages of children aged 12-23 months who received measles vaccine, and the counts of

measles for previous year, the employment rates, and the percent of children under

5 years classified as malnourished according to anthropometric index of nutritional

status (weight-for age: % below −3SD) had significant effects on measles risks as

their associated 95 % credible intervals for their fixed effects do not contain zeros.

Most of the variables are percentages except LST and LPrev variables. These two

variables were transformed using natural logarithm. We performed a sensitivity

105



Table 4.3: Summary statistics: fixed effects (posterior mean), posterior standard
deviation and posterior 95 % credible interval for Model 11

Variable Mean Standard deviation 95 % CI

Percentage of women -0.0646 0.0145 -0.0935, -0.0366
aged between 15-49 with an
education more than secondary

Count of measles 0.1020 0.0440 0.0178, 0.1908
for previous year

Employment rates -0.0561 0.0023 -0.0616, 0.0513

Number of people 0.8487 0.0727 0.7081, 0.9934
aged between 0 and 24 years

Percentages of children -0.0379 0.0147 -0.0677,-0.0103
aged 12-23 months who
received measles vaccine

Percentages of children under 0.0643 0.0285 0.0019, 0.1128
age 5 classified as malnourished
according to anthropometric index
of nutritional status
(weight-for age: %below − 3SD)

analysis, by fitting a model with out the variable LST, to check whether the coeffi-

cients might change significantly. Model 11 without LPrevCase variable performed

equally well with the model will all parameters (DIC=5000.68). Most of the coeffi-

cients of different variables did not change significantly(except Malnou).

Negative and positive fixed effects, if exponentiated, are interpreted as decreases

and increases in relative risks, respectively. For example, an increase of 1% in the

percent of women aged 15-49 years with an educational level more than secondary

implies a decrease of approximately 6% in the risk of measles. Also, an increase

in 1 unit the log of the number of people aged between 0 and 24 years (LST) is

associated with an increase of around 133.7 % in the risk of measles.

4.3.3 Spatio-temporal distribution of measles relative risks

Fig. 4.2 shows the maps of the distribution of posterior means of structured ran-

dom effects, significant observed structured random effects, uncertainty around the

spatial random estimates, and posterior probabilities of constituencies with specific

relative risks exceeding one. For the maps of posterior means of structured random
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Table 4.4: Summary statistics: fixed effects (posterior mean), posterior standard
deviation and posterior 95 % credible interval for Model 11 when variable LPrevCase
removed from the model

Variable Mean Standard deviation 95 % CI

Percentage of women -0.0702 0.0152 -0.0.1005, -0.0406
aged between 15-49 year with an
education more than secondary

Employment rates -0.0570 0.002 -0.0569, 0.0516

Number of people 0.9194 0.0703 0.7812, 1.0579
aged between 0 and 24 years

Percentages of children -0.0448 0.0146 -0.0740,-0.0166
aged 12-23 months who
received measles vaccine

Percentages of children under 0.0516 0.0261 -0.0047,0.097
5 years classified as malnourished
according to anthropometric index
of nutritional status
(weight-for age: %below − 3SD)

effect (a), the colours ranged from light grey to dark grey with the extreme nega-

tive random effects corresponding to extreme light grey and the extreme positive

random effects corresponding to extreme dark grey. Three different numbers were

used to distinguish significant observed random effects. Light grey denoted by (-1)

indicated significant negative random effects, (0) indicated non-significant random

effects, and dark grey denoted by (1) represented significant positive random effects

(Fig. 4.2 (b)). It was observed that constituencies in Omusati, Caprivi, Omaheke,

part of Kavango, and Omaruru had significant negative random effects on measles.

From Fig. 4.2 (c), the spatial estimates in the northern and central parts of Namibia

are associated with high uncertainty.

Fig. 4.2 (d) shows the distribution of posterior probabilities of constituencies with

specific relative risks exceeding one after adjusting for covariates. In Kunene region,

Opuwo, Khorixas, and Outjo constituencies had higher measles risks. There was a

higher measles risk in most constituencies in Ohangwena region. In Otjozondjupa

region, Okahandja and Otjiwarongo constituencies had moderate probabilities to be

classified as areas at high risk of measles. For Khomas region, the constituencies

in Windhoek urban had very high measles risk compared to Windhoek rural con-

stituency.
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Figure 4.2: (a) map of posterior means structured random effects (Model 11) ; (b)
map of significant posterior means of structured random effects ( Model 11), (c)
map of posterior standard error of random effects (Model 11), (d) map of posterior
probabilities p(SRR > 1 | y) (Model 11) .

All Hardap region’s constituencies had high probabilities of relative risks exceeding

one. The constituencies in Omusati, Omaheke, and Caprivi regions had probabilities

of relative risks exceeding one close to zero.

Fig. 4.3 shows the temporal behaviour in the measles risk in Namibia between

2005 and 2014 and it concurs with temporal trend observed in measles data before

smoothing techniques were applied (Fig. 4.1).
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Figure 4.3: Boxplots of exponentiated posterior medians of temporal effects of
measles relative risks in Namibia over the period 2005-20014.

Although there were some fluctuations in the risk of measles as the posterior means

of temporal effects (when exponentiated) changed over time, it is noted that the

measles risk followed an upward trend with 2009 and 2014 having remarkable peaks

in measles risk (i.e. high posterior medians in temporal effect).
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4.4 Discussion

The main aim in this study was to use count data that are available at regional

level for the period 2005-2014 to fit an appropriate spatio-temporal model that can

be used for inference at lower level (constituency level). Furthermore, the study

aimed at correcting measurement errors in covariates. Thus, the study had to deal

with a problem of spatial misalignment. To deal with this problem, a multi-step

approach was used, which was fundamentally based on the combination of the pop-

ulation proportional allocation of cases for a non-uniformly distributed population

and hierarchical smoothing techniques. The results of this study are consistent

with previous studies that showed spatial and temporal variability in measles risk

(Chiogna & Gaetan, 2004; Zhu et al., 2013; Finley et al., 2014). Like many other

covariates used in this study, percentages of children under age 5 classified as mal-

nourished and employment rates variables were only available from the 2013 NDHS.

Thus, it was impossible to obtain yearly data for these covariates.

However, it would have been restrictive to assume that covariates remained constant

over time. Introducing classical measurement error models in these two covariates

improved the spatio-temporal ecological regression model. Model 11, which consid-

ered measurement error models, performed better than the best model (i.e. Model

9) among the näıve models (i.e. models that ignored errors in covariates). Also,

results from Model 9 indicated that the percentage of children under 5 years clas-

sified as malnourished was not statistically significantly associated with the risk of

measles (CI: -0.0609, 0.0772). However, when errors were accounted for in Model 11,

this variable became significant (CI: 0.0019, 0.1128). This showed that indeed the

dynamic of employment and nutrition had changed significantly during the period

2005-2014. In addition, this result confirmed the well-known fact that the common

practice of not accounting for measurement error by the majority of researchers may

yield misleading results (Buonaccorsi, 2010; Wattanasaruch et al., 2012).

This study identified the number of people aged between 0 and 24 years and the

counts of measles for the previous year as significant predictors of the measles risks.
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These findings are similar to the results of other studies conducted on other con-

tagious diseases (Chiogna & Gaetan, 2004; Zhu et al., 2013; Restrepo et al., 2014;

Doungmo et al., 2014) and confirmed that the proxy of social mixing and the exis-

tence of pools of the disease are critical at sustaining and continuing transmission

to the subsequent years.

In this study, the percentage of women aged between 15-49 years with an educational

level of more than secondary was found to be inversely associated with measles risk.

This could be explained by the fact that education implies more knowledge about

the risks associated with measles. In addition, education may also be considered

as a proxy for social status which would imply that higher education translates to

better resources and hence increased positive attitude towards health seeking (Adika

et al., 2013). It is established that the attitude towards health seeking is one among

other reasons for missing measles vaccination and underreporting of measles cases

(Filia et al., 2013; Jasem et al., 2012).

Another finding of this study is that the percentage of children aged 12-23 months

who received the measles vaccine (Vacc) are inversely associated with measles rela-

tive risks. It is therefore vital for Namibia to maintain existing policies (e.g. sup-

plementary vaccination campaign every three years or in case of measles outbreaks)

and improve the delivery of the measles vaccine by embracing strategies that are

known to increase measles vaccine coverage.

The study also found the employment rate and percentage of malnourished chil-

dren under 5 years to be associated with measles risks. Lower employment rates

are commonly associated with poor social conditions within households, which may

reflect heightened close contacts of the infected with susceptible vulnerable kids due

to low nutrition. This finding concurs with results from the study by Kumar et al.

(2003).
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Moreover, the results showed that the constituencies in Ohangwena region were

at high risk of measles. This result is consistent with previous work by Ntiram-

peba et al. (2017). One possible explanation is that free movement of people to and

from Angola may enhance close contact of non-immunized to the disease. Indeed,

Ohangwena is among the regions with a high population density and hence it has a

large number of susceptible populations. These findings could be useful in designing

strategies and interventions such as regular border checks and targeted vaccination

in high risk or along all border areas. In addition to frequent movements of popu-

lations along the Namibian and Angolan borders, the high measles risk observed in

Opuwo, Khorixas, and Outjo constituencies could be partly explained by low vac-

cination coverage. Although Omusati region shares borders with Angola and two

regions with high risk of measles (Kunene and Ohangwena), this region is among

other regions that include Caprivi, Omaheke and part of Kavango found to have a

very low probability to be classified as areas at high risk. Further studies should

be conducted to identify what could be the driving factors of low measles risk in

these regions especially in Omusati, which seems to be an island among troubled

areas. Furthermore, the study showed that Windhoek urban constituencies and all

constituencies of Hardap region had very high specific relative risks of measles.

In conclusion, regional aggregated data were used to build a spatio-temporal model

that is useful for constituency level inferences through a multi-step approach, while

accounting for measurement errors in covariates. The study pointed out that there

were significant variations in both spatial and temporal distribution of the measles

occurrence in Namibia. Also, it showed factors associated with measles risks in

Namibia.

On the basis of the findings of this study, we recommend the following. Firstly,

the health stakeholders should increase the vaccination coverage of susceptible in-

dividuals especially in group of people aged between 0 and 24 years. Particularly,

a systematic monitoring of vaccination of children aged less than five years living

in poor households may help reducing the risk of measles persistence. In addi-

tion, enhancing health promotion among mothers through information, education

and communication strategies should be used to improve vaccination coverage. Sec-

ondly, political leaders and stakeholders in the health sector should be able to plan

112



and design prevention and control strategies, and make important policy decisions

particularly in geographically targeted constituencies (e.g. constituencies in Kunene

and Ohangwena regions). Regular surveillance of population movement may assist

in controlling the risk of the disease. We particularly recommend regular border

checks and targeted vaccination of children in the areas identified as high risk or

along all border areas. Lastly, this study assumed that the counts of measles for the

previous year (PrevCase) was not time varying. However, there might be a serial

correlation between observed counts from successive years. Consequently, autore-

gressive models (AR(k)) could lead to better fits. Thus, it is recommended that

future studies should expand the fitted models by handling this variable as a time

varying covariate.
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Chapter 5

Joint modelling spatial patterns of

disease risk for data from multiple

sources: An application on HIV

prevalence data from antenatal

sentinel and demographic and

health surveys in Namibia

2

Background

In the disease mapping field, researchers often encounter data from multiple sources.

Such data are fraught with challenges such as lack of a representative sample, which

is often incomplete and most of which may have measurement errors, and may be

spatially and temporally misaligned. This study presents a joint model in the effort

to deal with the sampling bias and misalignment.

Methods

A joint spatial model was applied to estimate HIV prevalence using two sources: 2014

National HIV Sentinel survey among pregnant women aged 15-49 years attending

antenatal care and the 2013 Namibia Demographic and Health Surveys.

2Published as: (Ntirampeba, D., Neema, I., & Kazembe, L. (2017)
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Results

Findings revealed that health districts and constituencies in the northern part of

Namibia were found to be highly associated with HIV infection. Also, the study

showed that place of residence, gender, gravida, marital status, number of kids

dead, wealth index, education, and condom use were significantly associated with

HIV infection in Namibia.

Conclusion

This study has shown determinants of HIV infection in Namibia and has revealed

areas at high risk through HIV prevalence mapping. Moreover, a joint modelling

approach was used in order to deal with spatially misaligned data. Finally, it was

shown that the prediction of HIV prevalence using the NDHS data source can be

enhanced by jointly modelling other HIV data such as NHSS data. These findings

can help Namibia to tailor national intervention strategies for specific regions and

groups of population.

5.1 Introduction

Although a downwards change in the trajectory of the AIDS epidemic has been

achieved worldwide (UNAIDS, 2015b), by the end of 2014, 36.9 million people were

estimated to live with HIV (UNAIDS, 2015a), of which about 70 % (25.8 million)

are found in sub-Sahara Africa. In 2014, it was estimated that the global total of

2 million of people were newly infected with HIV, a large portion (1.4 million) of

which is said to be in sub-Sahara Africa (UNAIDS, 2015a).

Namibia is one country where the HIV prevalence is high (MoHSS, 2014b). In 2014,

the number of people living with HIV among adults and children was estimated to

be around 26000, of which 11000 were newly infected (MoHSS, 2014b). According

to the millennium development goals (MDGs), specifically MDG6, Namibia govern-

ment intended to reduce HIV prevalence among population aged 15-24 years from

8.2 % (2006) to 5 % by 2015. However, the HIV prevalence stood at 8.9 % in 2013

(NPC, 2017). Clearly, this trend points out that it would be impossible to achieve

this target. From the Namibia development plan 5 (NDP 5), which is tied to the

sustainable development goals (SDGs), new HIV infections per 1000 population was
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three for 2016/17, whereas HIV/AIDS mortality rate per 100 000 population was

134 in 2016-17 (Government, 2017). The targets for these two indicators are 1 and

90 by year 2021-2022, respectively.

The National HIV Sentinel Survey (NHSS) and Namibia Demographic and Health

Survey (NDHS) are the commonly used tools to monitor the prevalence of the HIV

trends in the country. Indeed, the analyses of data resulting from these surveys

are vital in generating strategic information for evaluating the effectiveness of pro-

grammes and policies and enabling to improve and redesign programmes. However,

each one of the two data sources has its own weaknesses that may lead to inaccu-

rate estimations of HIV prevalence. For the former, limitations such as accessibility

of ANC sites and exclusion of some categories of the population (e.g. men and

non-pregnant women) are well documented (Manda et al., 2015). The latter suf-

fers most of the times from a significant non-response drawback (Manda et al., 2015).

In the face of these limitations, a joint analysis of data from different sources has been

proven to be useful (Manda et al., 2012). It avoids multiple testing on the same data,

helps deal with identifiability in random effect parameters estimation, and increases

precision and efficiency of parameter estimates. Further, the multivariate analysis

technique can help to capture disease specific covariates and as well as to carry

pairwise and cross-covariances inferences between different sources (Manda et al.,

2012). Different approaches of multivariate techniques that include the multivariate

normal distribution, iterative generalised least squares (IGLS) method, multivariate

conditional autoregressive (MCAR) modelling, and the shared component modelling

are commonly used in the mapping of multiple diseases. Although multivariate nor-

mal and IGLS methods allow modelling different sources simultaneously, these two

methods underestimate the variation associated with sources (Manda et al., 2012).

In spatial disease mapping, one way to account for within and /or between areal

associations is to employ the MCAR modelling approach (Manda et al., 2012). But

due to high parameterisation, the computation and interpretation of parameters

becomes cumbersome. Recent applications of MCAR modelling approaches include

(Okango, Mwambi, Ngesa, & Achia, 2015; Gelfand & Vounatsou, 2003). Recently,
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shared component modelling approach pioneered by Knorr-Held & Best (2001) has

been extensively used in joint analysis of multiple health outcomes (e.g. Manda,

Feltbower, & Gilthorpe (2012); Manda, Masenyetse, Cai, & Meyer (2015); Knorr-

Held & Best (2001); Downing, Forman, Gilthorpe, Edwards, & Manda (2008); On-

icescu, Hill, Lawson, Korte, & Gillespie (2010)). This model splits the disease profile

into two components, namely the disease-specific component representing spatially

varying factors, and the shared component which is a proxy of unobserved spatially

varying factors that are common to both diseases (Knorr-Held & Best, 2001). Bellier

et al. (2013) have jointly analysed multiple data sources by including an observabil-

ity parameter. Guo & Carlin (2004) have used a full Bayesian approach to link

longitudinal and survival data. Other recent examples of jointly modelling multiple

data sources include Bao, Raftery, & Reddy (2015), He et al. (2014), Sturrock, Pul-

lan, Kihara, Mwandawiro, & Brooker (2013), Li, Conti, Diaz-Sanchez, Gilliland, &

Thomas (2013), and Pan, Jeong, Xie, & Khodursky (2008).

Even though there is a rich literature on analyses of determinants of HIV and its

geographical spread, most of the analyses used were based on univariate methods

for different data sources. One notable study by Manda et al. (2015) used a shared

component modelling approach to jointly analyse data from NDHS and ANC sur-

veys. For the two sources, district level HIV prevalence rates were used and also

two contextual covariates were considered as determinants of HIV. In other words,

in their study, the data were first aggregated at district level and then a spatial

bivariate modelling approach was applied on aggregated rates. In this situation, a

misalignment in data sources was avoided. However, this has some limitations as,

for instance, many covariates available from ANC or NDHS would not be used in

the joint analysis. One way to include most ANC and/or NDHS covariates would

be first to compute averages at district level. Alternatively, a model that allows

different neighbourhood structures may be useful as it would permit to model data

available at different block levels. A primary objective of this study was to develop

a joint spatial model for NHSS and NDHS data, which enables the estimation at

any location of the constituency or district level while dealing with misalignment in

data.

117



5.2 Methods

5.2.1 Data

Two data sets were used in this study, namely, the 2013 Namibia Demographic and

Health Survey (NDHS) data and the 2014 National HIV Sentinel Survey (NHSS)

data from women aged 15-49 years attending antenatal care clinics (ANC). Table 5.1

provides a list of all variables used in this study, as identified through the literature

(Manda et al., 2015; Okango et al., 2015).

5.2.1.1 NDHS data

The sampling methodology for the 2013 Namibia Demographic and Health Survey

was a two stage stratified cluster survey design. In the first stage, 554 enumera-

tion areas (EAs) were selected using probability proportional to the size of the EA,

with stratification into rural and urban areas. In the second stage, 20 households

were selected from each EA using equal probability systematic sampling approach.

One of the key objectives of this survey was the collection of data on knowledge

and prevalence of HIV/AIDS and other diseases such as diabetes, cardiovascular

disease, cancer, and chronic respiratory disease (MoHSS, 2013). To achieve this ob-

jective, the survey included three questionnaires (Household questionnaire, women’s

questionnaire, and the men’s questionnaire) that addressed questions on household

characteristics and assessed women’s and men’s knowledge of HIV. A total of 9176

women and 3950 men formed part of the 2013 NDHS interviews. Further, the survey

included HIV testing among women and men aged between 15 and 64 years selected

throughout the country. Details on the survey methodologies used in collecting data

can be obtained from the 2013 NDHS report (MoHSS, 2013). The variables result-

ing from this survey were grouped into four categories, namely, demographic, social,

biological, and behavioural. The sample for the survey is thought to be a represen-

tative of the general population and also provides a vast range of population and

demographic characteristics useful in the study of HIV prevalence and its related

determinants.
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5.2.1.2 NHSS data

Since 1992, every second year, a National HIV Sentinel survey (NHSS) has been con-

ducted by the Ministry of Health and Social Services (MoHSS) in order to determine

HIV prevalence among pregnant women aged 15-49 years attending antenatal care

(ANC) clinics at public health facilities in Namibia. Since its inception, the NHSS

has expanded from 8 sites to 35 district sites, supplemented by 98 satellite facilities.

The main objective of the NHSS is to obtain reliable data that can be used to assess

the national prevalence of HIV among pregnant women in the age group of 15-49

years; to identify socio-demographic covariates associated with high prevalence; and

to fast-track the estimation of the spatial and temporal prevalence trends. Sam-

pling techniques, sample size and data collection methods were based on the World

Health Organisation (WHO) guidelines for conducting HIV surveys among pregnant

women and other groups (MoHSS, 2014b). For more details, the reader can refer to

the surveillance reports of the National HIV sentinel survey (MoHSS, 2014b). In this

study, the 2014 NHSS, which was conducted from 10 March to 30 September 2014,

was used. In total, of the 7 920 women enrolled in the 2014 NHSS, the majority of

them were multi-gravida. In the data, the following variables were collected: age,

gravidity, district, and HIV status. Though not many covariates are provided by the

NHSS, it brings an important contribution in terms of HIV prevalence to this study

as not many non-response cases are experienced in comparison to the NDHS. Table

5.1 provides a list of all variables used in this study, as identified in the literature.

5.3 Statistical models

5.3.1 Univariate modelling of data

The univariate modelling approach was achieved by fitting a separate model for each

data source as follows. Let yij be a binary indicator of HIV incidence at location i

(si) from dataset j such that yij is one if a disease incident is observed at location

i for dataset j and zero elsewhere. In here, the location i could be a health district

facility in a health district (for NHSS data source) or a location in a constituency

(for NDHS data). Then yij ∼ Bernouilli(pij), where pij is the probability of a

recorded incident at location i from dataset j. Thus, the independent model fitted
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Table 5.1: Summary of variables used in this study by source

Variable NDHS NHSS

1 HIV status HIV status
2 Place of residence Age of the respondent
3 Gender Number of children born by a mother (Gravidity)
4 Age of the respondent
5 Head of household
6 Marital status
7 Number of kids dead
8 Education
9 Wealth
10 Stayed away of home
11 Sexual activity (in last 4 months)
12 Age at first sex
13 condom use
14 Had STI in last 12 months

to dataset ( j = 1, 2) is given by

logit(pij) = β0j +
r∑
k

βkXijk + fj(gi) + zj(si), (5.1)

with β0j representing the model intercept, xijk is the kth linear covariate of dataset j

in a given health district facility i or constituency i, fj(·) is a function of a non-linear

covariate, gi is a vector of ages, and zj(si) is Gaussian random field. Eq. 5.1 can be

split into two separate (univariate ) models as follows. At the first stage of Bayesian

hierarchy,

logit(pi1) = β01 +
r∑
k

βkXi1k + f1(gi) + z1(si), (5.2)

logit(pi2) = β02 +
r∑
k

βkXi2k + f2(gi) + z2(si), (5.3)

For the Gaussian random field, it was assumed a multivariate Gaussian distribution

z(s) ∼ N(0,Σ), where Σ is the covariance matrix. The elements of the covariance

matrix Σ are specified as a function of the marginal variance of the process σz and

the Matérn correlation function CorM as follows

Σij = σzCorM(z(si), z(sj)), (5.4)
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The Matérn correlation function is given by;

CorM(z(si), z(sj)) =
21−ν

Γ(ν)
(κ ‖ si − sj ‖)νκv(κ ‖ si − sj ‖), (5.5)

where ‖ · ‖ denotes the Euclidean distance, κν(·) is the modified Bessel function of

second order, k and ν are scale parameter and smoothness parameter respectively.

At the second stage of the Bayesian hierarchy, inverse Gamma prior distributions

were assigned to k, ν, and σz. For fixed effect parameters β, weakly informa-

tive Gaussian priors β ∼ N(0, τ−1
β I) with small precision τβ on identity matrix

were assumed. In order to deal with non-linearity effects of continuous covari-

ates (ages), ∆gi was assumed to follow a first order random walk process (i.e.

∆gi | ∆gi−1 ∼ N(∆gi−1, σ
2). Alternatively, a semi parametric model that uses

the penalised regression spline approach may be used and details of the penalised

regression approach can be found elsewhere (Okango, Mwambi, Ngesa, & Achia,

2015; Ngesa, Mwambi, & Achia, 2014).

5.3.2 Joint modelling of HIV prevalence from DHS and

NHSS data sources

In the joint (bivariate) setting, the HIV prevalence from the NDHS data source and

the HIV prevalence from NHSS data source were modelled jointly instead of fitting

a separate model for each data source. In this study, a bivariate modelling approach

was applied using the spatial shared component model that incorporated information

from the NHSS source that might be common to the NDHS data source in order to

improve the estimation of HIV prevalence using the NDHS source. Considering the

bivariate model which pools the two datasets, let yij be a binary indicator of HIV

incidence at location i from dataset j = 1, 2. Then yij ∼ Bernouilli(pij), pij is the

probability of recorded HIV incident pertaining to the jth dataset.
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The vectors relating to all observations for the two responses were concatenated in

Y =



y11 NA
...

...

yn12 NA

NA y21

...
...

NA yn21


where nij is the number of observations for each response variable, j = 1, 2. Thus,

the joint (bivariate) model is then given by

logit(pi1) = β01 +
r∑
k

βk1Xi1k + f1(gi1) + z1(si), (5.6)

logit(pi2) = β02 +
r∑
k

βk2Xi2k + f2(gi2) + z2(si) + γz1(si), (5.7)

where each response has a vector x of linear covariates with corresponding regression

parameters βkj; gij is the vector of ages which are assumed to follow a random walk

of order 1; z1(si) is a Gaussian random field shared between both responses, the

interaction parameter γ links the two response variables (i.e. HIV prevalence from

NHSS and HIV prevalence from NDHS) and describes how much of the structure

captured in z1(si) is also inherent in the logit(pi2). Similar prior distributions to

those specified for univariate models were assigned for parameters and hyperparam-

eters of the joint model. A summary of models to be fitted in this study is provided

in Table 5.2.

Table 5.2: Nested models to be fitted in this study

Model GRF Shared component covariates

MU1: Univariate model for NDHS data
√

- -
MU2: Univariate model for NHSS data

√
- -

MU12: Univariate model for NDHS data +covariates
√

-
√

MU22: Univariate model for NHSS data+covariates
√

-
√

MJ1: Bivariate model for NDHS & NHSS data
√ √

-
MJ2: Bivariate model for NDHS & NHSS data+covarites

√ √ √
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5.3.3 Estimation of parameters and model diagnostics

The estimation of parameters involved evaluation of the posterior distribution, which

is the conditional distribution of the model parameters given the observed HIV data

is obtained by taking the product of likelihood function together with the prior and

hyper distributions. In this study, the posterior distribution is given by

p(θ|yij) ∝
n∏
i=1

L(yij, pij)
2∏
g=1

[p(∆gi|τ−1
g )p(τ−1

g )]
r∏

k=1

p(βk)p(τ
−1
βk

)
2∏
j=1

p(zj|kj, νj, σzkj)p(γ)

(5.8)

where θ is a vector of all parameters.

A stochastic partial differential equation (SPDE) approach with R-INLA was em-

ployed to estimate posterior marginal distributions and any other posterior infer-

ences. Convex hull meshes (Fig. 5.1) on study area were used in order to avoid the

boundary effect (Krainski & Lindgren, 2013). Fig. 5.1 presents the subdivision of

the domain of study into a collection of non-intersecting triangles with a condition

that any two triangles meet at most a common edge or corner. The initial vertices

are placed at the locations for observations and then additional vertices are added in

a way that minimises the number of triangles needed to fill up the size and shape of

the study domain of interest (Namibia). The polygon of triangles was extended out

of the Namibian boundaries in order to avoid boundary effects. The best model was

identified using the deviance information criterion (DIC) given by D + 2p , where

D is the deviance evaluated at the posterior mean and p the effective number of

parameters in the model. By the rule of thumb, the best model is one with the

smallest value of DIC.
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Figure 5.1: Convex hull around Namibia boundaries

5.4 Results

5.4.1 Descriptive results

Fig. 5.2(a) shows the spatial distribution of observed HIV prevalence in each con-

stituency for women and men aged between 15 and 64 years obtained from the

NDHS. This figure points out that there exist geographical (constituency level) dif-

ferences of HIV prevalence in Namibia. Whereas Fig. 5.2(b) displays the geographi-

cal distribution of observed HIV prevalence among pregnant women aged 15-49 years

attending antenatal care (ANC) clinics at public health facilities in Namibia (HIV
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Sentinel survey data). Two colours, namely purple and blue, were used to distin-

guish levels of HIV prevalence. The darker the purple, the lower is the observed HIV

prevalence, whereas the darker the blue, the higher is the HIV prevalence. From

this figure, it can be noted that there exist spatial differences among health districts

with respect to HIV prevalence. Summaries of HIV prevalence for both NDHS and

NHS data sources are presented in Tables 5.3-5.6

Figure 5.2: Crude HIV prevalence: (a) Constituencies HIV prevalence (2013 NDHS
data); (b)Health districts prevalence (2014 NHSS data)
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Table 5.3: HIV prevalence per constituency and per gender
Region constituency Men(%) Women(%) combined(%)
Caprivi Kabe 12.9030 35.2941 24.6154

Katima Mulilo urban 22.8571 40.2439 32.2368
Kongola 5.2632 24.000 15.9091
Linyati 22.222 25.000 23.8095
Sibinda 12.000 32.000 22.000

Erongo Arandis 6.667 7.6923 7.1429
Daures 0 0 0
Karibib 12.500 15.1515 13.8462
Omaruru 17.7778 27.2727 21.7949
Swakopmund 14.1732 14.2857 14.2276
Walvis Bay rural 10.9091 20.833 16.5354
Walvis Bay urban 9.7222 7.7922 8.7284

Hardap Gibeon 4.1667 12.000 8.1633
Mariental rural 12.5000 9.6774 10.9091
Mariental urban 9.0909 12.9032 10.9375
Rehoboth East urban 7.500 6.1224 6.7416
Rehoboth rural 12.500 5.5556 8.8235
Rehoboth West urban 0 4.5455 2.2727

Karas Berseba 0 16.667 9.375
Karasburg 12.5 19.048 16.22
Keetmanshoop rural 0 6.250 3.23
Keetmanshoop urban 12.0 14.89 13.40
Luderitz 16.67 15.63 16.07
Oranjemund 3.57 3.84 3.70

Kavango Kahenge 14.29 16.44 15.65
Kapako 13.16 8.16 10.34
Mashare 0 8.33 3.70
Mungu 6.25 22.5 15.28
Mukwe 22.50 18.0 20.0
Ndiyona 4.0 15.79 11.11
Rundu rural east 9.375 25.49 19.277
Rundu rural west 10.71 17.46 14.29
Rundu urban 31.58 25 27.66

126



Table 5.4: HIV prevalence per constituency and per gender)(cont.)
Region constituency Men(%) Women(%) combined(%)
Khomas Katutura central 7.27 13.41 10.95

Katutura east 0 0 0
Khomasdal north 4.10 3.70 3.91
Moses Garoeb 23.30 20.86 22.325
Samora Machel 2.84 10.78 7.64
Soweto 0 20.75 8.94
Tobias Hainyeko 24.02 25.0 24.43
Windhoek east 0 0 0
Windhoek rural 13.04 13.04 13.04
Windhoek west 0 2.13 1.34

Kunene Epupa 6.6670 16.67 7.69
Kamanjab 9.52 5.88 7.89
Khorixas 4.76 6.25 5.66
Opuwo 10 12 11.11
Outjo 17.86 11.43 14.29
Sesfontein 15.38 0 7.69

Ohangwena Eenhana 6.90 7.89 7.46
Endola 14.29 22.50 19.67
Engela 10.20 34.25 24.59
Epembe 30.0 10.0 18.0
Ohangwena 16.67 15.80 16.21
Okongo 2.86 12.5 8.79
Omulonga 7.14 20.0 14.13
Omundaungilo 0 28.57 14.29
Ondobe 2.77 24.19 16.32
Ongenga 8.33 16.22 13.11
Oshikango 4.08 25.97 17.46

Omaheke Aminuis 5.26 5.56 5.41
Epukiro 8.33 0 5.26
Gobabis 10.52 10.0 10.26
Kalahari 20.0 4.76 11.11
Otjinene 5.88 4.17 4.88
Otjimbinde 0 0 0
Steinhausen 7.14 10.0 8.33
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Table 5.5: HIV prevalence per constituency and per gender)(cont.)
Region constituency Men(%) Women(%) combined(%)
Omusati Anamulenge 11.76 16.67 14.63

Elim 25.0 27.78 26.47
Etayi 14.89 15.28 15.13
Ongongo 9.09 20.51 16.39
Okahao 18.75 20.83 20.0
Onesi 8.0 14.29 11.32
Oshikuku 0 35.29 15.79
Otamazi 20.0 29.62 26.19
Outapi 17.39 22.67 20.66
Ruacana 18.18 12.12 15.58
Tsandit 9.09 30.30 20.66

Oshana Okaku 8.7 22.86 17.24
Okatana 7.69 36.36 20.83
Omupunda 16.67 58.33 44.44
Ondangwa 11.67 28.09 21.45
Ongwendiva 8.23 10.42 9.39
Oshakati east 18.18 22.86 20.8
Oshakati west 16.67 18.18 17.58
Uukwiyu 4.17 21.43 13.46
Uuvudhiyat 11.76 - 11.76

O/shikoto Eengondi 17.65 28.21 22.22
Guinas 11.11 7.14 10.17
Okankolo 5.26 22.22 10.71
Olukonda 26.67 4.55 13.51
Omuntele 9.09 26.47 19.64
Omuthiyagwiipundi 19.57 27.08 23.4
Onayena 10.52 24..32 19.64
Oniipa 17.5 8.77 12.37
Onyaanya 6.25 14.29 10.81
Tsumeb 1.85 16.78 4.42
Otjiwarongo 13.19 13.48 13.33
Tsumukwe 12.50 12.5 12.5
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Table 5.6: Observed HIV prevalence per health district/site
Heath district/site Tested Negative Positive Prevalence
Andara 255 204 51 20
Aranos 138 122 16 11.59
Eenhana 215 187 28 13.02
Engela 259 200 59 22.78
Gobabis 158 138 20 12.66
Grootfontein 222 191 31 13.96
Karasburg 214 183 31 14.49
Katima Mulilo 375 240 135 36
Keetmanshoop 163 140 23 14.11
Khorixas 180 157 23 12.78
Luderitz 278 220 58 20.86
Mariental 191 168 23 12.04
Nankudu 195 164 31 15.9
Nyangana 279 244 35 12.54
Okahandja 195 169 26 13.33
Okahao 228 181 47 20.61
Okakarara 156 142 14 8.97
Okongo 263 217 46 17.49
Omaruru 170 148 22 12.94
Onandjokwe 299 232 67 22.41
Opuwo 155 149 6 3.87
Oshakati 286 234 52 18.18
Oshikuku 306 249 57 18.63
Otjiwarongo 236 202 34 14.41
Outapi 254 225 29 11.42
Outjo 188 167 21 11.17
Rehoboth 154 140 14 9.09
Rundu 303 230 73 24.09
Swakopmund 210 188 22 10.48
Tsandi 277 221 56 20.22
Tsumeb 257 219 38 14.79
Usakos 119 93 26 21.85
Walvisbay 219 176 43 19.63
Windhoek 330 284 46 13.94
Overall 7727 6424 1303 16.86
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5.4.2 Estimated HIV prevalence

Fig. 5.3(a) shows the estimated HIV prevalence within health districts using NHSS

data source. From this figure, it can be deduced that in the northern part of

Namibia, Katima is estimated to have the highest HIV prevalence (30 % to 35

%). Furthermore, for Andara, Rundu, Nakundu, Oshakati, Onandjokwe, Okahao,

Tsandi, Outapi, Eenhana, Kongo and Engela health districts, the HIV prevalence

is estimated between 15 % and 20 %. In the central west, Walvis Bay and Usakos

health districts are estimated to be between 15 % and 20 % of HIV infection. In

the south, the HIV prevalence is estimated be around 15 % in Luderitz. The rest

of the health districts had a reduced association with HIV infection (the prevalence

is estimated to be below 15 %). Fig. 5.3(b) presents the estimates of prevalence

derived from NDHS data using univariate model. High HIV infection is predicted

to be associated with most of the constituencies in Caprivi region (25 % to 30 %).

Other constituencies with elevated HIV prevalence are found in Omusati, Oshana,

Oshikoto, and Kavango regions (15 % and 20 %). Karibib, Walvis Bay rural, Walvis

Bay urban, and Luderitz were estimated to have approximately between 10 % and

20 % of HIV infection. The rest of the constituencies are estimated to have HIV

prevalence of around 10 %.

Fig. 5.4 provides the estimates of HIV prevalence obtained from the bivariate model

that pools the two datasets together. The bivariate model reveals an under estima-

tion of HIV prevalence when the NDHS source is used for estimation separated from

the NHSS source. The univariate model estimated the prevalence to be between 0 %

and 30 %, whereas the bivariate model estimated the HIV prevalence to be between

0 % and 35 %. For both data sources, the spatial distribution of HIV infection is

very similar to the spatial distribution of HIV infection when univariate models were

employed.
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Figure 5.3: Estimated HIV prevalence using separate models: (a) HIV prevalence
estimates from 2014 NHSS data; (b)HIV prevalence estimates from 2013 NDHS data

5.4.3 Linear fixed effects and nonlinear effects

From Table 5.7, it can be noticed that model Mj2 is the best model among all

models. Thus, a summary statistics of this model is presented in Tables 5.8 and

5.9 and the interpretation of the results is provided in the subsequent sections. The

results of the separate (univariate) model for each data set are provided in Tables

5.11, 5.12 and 5.10, respectively.

5.4.3.1 HIV risk and its determinants: NHSS data

For the NHSS data source, two covariates namely age and gravida were available

at district level (Table 5.8). The age covariate was modelled using the first order

random walk in order to deal with the nonlinearity whereas the gravida covariate was

assumed to have linear effects on HIV. The odds of HIV infections among pregnant

women with multi-gravida (mother had given birth to two more children) was 1.88

times as likely as that of women with prima-gravida (only one child born)(OR:
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Figure 5.4: Estimated HIV prevalence using the bivariate model: (a) HIV prevalence
estimates for 2014 NHSS data; (b)HIV prevalence estimates for 2013 NDHS data
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Table 5.7: DIC values for fitted models

Model DIC

MU1 7011.89
MU2: Univariate model for NHSS data 6872.59
MU12: Univariate model for NDHS data +covariates 6344.00
MU22: Univariate model for NHSS data+covariates 6388.33
MJ1: Bivariate model for NDHS & NHSS data NDHS-DIC NHSS-DIC Total DIC

7003.498 6870.218 13873.72
MJ2: Bivariate model for NDHS & NHSS data+covarites NDHS-DIC NHSS-DIC Total DIC

5998.11 6355.98 12354.09

1.88, 95 % CI: 1.52 to 2.32). Fig. 5.5(a) shows the relationship between the age

of a pregnant woman and its effects on HIV infection. This figure shows that the

likelihood of HIV infection follows a nonlinear growth trajectory (black lines indicate

the nonlinear trajectory whereas the dotted lines represent its 95 % credible interval).

An increase in the odds of HIV infection is observed up to a certain age and then it

is followed by a decline in the risk of HIV infection.

5.4.3.2 HIV risk and its determinants: NDHS data

For the NDHS data, covariates on demographic, social, sexual behaviour, and bio-

logical characteristics were available and hence used in this study. Tables 5.8 and

5.9 present the results.

Place of residence classified as rural or urban was significantly related to HIV infec-

tion among men and women. The chance of HIV infection was lower for men and

women residing in rural areas compared to those residing in urban areas (OR: 1.53,

95 % CI: 1.27 to 1.84).

Gender was also found to be significantly associated with HIV infection. The like-

lihood of a man being infected was 0.68 times lower compared to that of a woman

(95 % CI: 0.58 to 0.79).
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Table 5.8: Estimated covariate effects and their 95 % credible intervals (CI)

Joint(bivariate) model
Covariate OR 95 % CI
β01 0.12 (0.07, 0.23)
Gravida
Prima-gravida (ref) 1.00
Multi-gravida 1.88 (1.52, 2.32)
β02 0.08 (0.04, 0.18)
Place Residence
Rural (Ref) 1.00
Urban 1.53 (1.27, 1.84)
Gender
Female 1.00
Male 0.68 (0.58, 0.79)
Head of household
Male (Ref) 1.00
Female 1.14 (0.97, 1.33)
Marital status
Never in union (Ref) 1.00
Married 0.72 (0.58, 0.89)
Living with a partner 1.41 (1.16, 1.73)
Widowed 1.46 (1.06, 2.02)
Divorced 1.07 (0.66, 1.75)
Separated 1.41 (1.04, 1.91)
Number of Kids dead
No child died (Ref) 1.00
One child died 1.84 (1.48, 2.29)
More than one child died 2.69 (1.84, 3.91)
Education
No education (Ref) 1.00
Primary 1.09 (0.87, 1.37)
Secondary 0.84 (0.66, 1.06)
Higher 0.63 (0.41, 0.96)
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Table 5.9: Estimated covariate effects and their 95 % credible intervals (CI) (con-
tinued)

Joint (bivariate) model
Covariate OR 95% CI
Wealth index
Poorest (Ref) 1.00
Poorer 0.93 (0.79, 1.09)
Middle 1.10 (0.89, 1.35)
Richer 0.78 (0.61, 0.99)
Richest 0.33 (0.24, 0.46)
Stayed away from home
Did not move away (Ref) 1
Moved away 0.93 (0.79, 1.09)
Sexual activity
Never had sex (Ref) 1.00
Not active 0.98 (0.90, 1.07)
Active 1.15 (1.06, 1.26)
Age at first sex (in years)
Never had sex (Ref) 1.00
≤ 11 1.29 (0.87, 1.91)
12 to 14 1.08 (0.67, 1.73)
15 to 17 1.47 (0.99, 2.17)
18 and above 1.26 (0.85, 1.87)
Condom used
No(Ref) 1.00
Yes 1.78 (1.53,2.07)
Had STI in last 12 months
No (Ref) 1.00
Yes 1.05 (0.96, 1.16)
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The head of a household was found to be significantly linked with HIV infec-

Figure 5.5: Estimated nonlinear effects of age on HIV infection and corresponding
confidence intervals: (a) NHSS data; (b) NDHS data

tion. Men or women living in a household headed by a woman had higher risks of

infection compared to one living in a household headed by a man (OR: 1.14, 95 %

CI: 0.97 to 1.33), though not significant.

Men and women who were married had a less risk of infection compared to those

who were never in union (OR: 0.72, 95 % CI: 0.58 to 0.89). The likelihood for HIV

was higher for widowers compared to men and women who were never in a union
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(OR: 1.46, 95 % CI: 1.06 to 2.02). The odds of HIV infection among men and

women living with partners was 1.483 times higher than that of those who were

never in union (OR:1.41, 95 % CI: 1.16 to 1.73). Those who divorced had 1.07

times higher chance of infection relative to those who were never in union, though

it is not significant (OR: 1.07, 95 % CI: 0.66 to 1.75). The chance of HIV infec-

tion for those who separated or non-longer lived with their partners is 1.41 times

higher than that of those who were never in a union (OR:1.41, 95 % CI: 1.04 to 1.91).

The likelihood of infection with HIV for men and women who had one of their

children dead is as 1.84 times higher as those whom none of their children died (OR:

1.84, 95 %CI: 1.48 to 2.29). Individuals who had more than one of their children

dead were 2.69 times more likely to be infected with HIV relative to those who did

not have any of their children dead (OR:2.69, 95 % CI: 1.84 to 3.91).

Education was found to be negatively associated with HIV infection. The likeli-

hood of testing positive was lower for men and women with secondary and or higher

education as compared to those with no education. For instance, the odds of being

infected with HIV was 0.63 times lower for men and women with higher education

as compared to those with no education (OR:0.63, 95 % CI: 0.41 to 0.96).

Wealth was found to be inversely associated with HIV infection. The chance of

infection with HIV was 0.78 times less for those classified as richer than that of

those classified as poorest (OR:0.78, 95 % CI: 0.61 to 0.99). The men and women

in the category of the richest were 0.33 times less likelihood of getting HIV as com-

pared to those in the category of the poorest (OR: 0.33 , 95 % CI: 0.24 to 0.46).

Those in the middle class had 1.10 times odds of testing positive as compared to

those in the lowest class (OR: 1.10, 95 % CI: 0.89 to 1.37), though not significant.

Although not significant, individuals classified as poorer were 0.93 times less likely

to test positive as compared to those classified as poorest (OR: 0.93, 95 % CI: 0.79

to 1.09).
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Tables 5.8 and 5.9 also show that sexual behaviour characteristics that include cur-

rent sexual activity, condom use, and age at first sex were found to be related to HIV

infection. Contrary to general myth, condom use was found to be positively related

to HIV infections. Individuals who ever used condoms during their last sex with

most recent partners were 1.78 times at higher risk of HIV infection as compared

to those who did not use condoms during their last sex with most recent partners

(OR: 1.78, 95 % CI : 1.53 to 2.07).

Individuals with a history of STI in the last 12 months were 1.05 times more likely

to be HIV positive relative to those who did not contract STI in the last 12 months

(95 % CI: 0.96 to 1.16), though the difference is not significant.

People who had been away from their homes for more than one month in the last

12 months were found to be less likely to be HIV positive compared to those who

did not go away from their homes for more than one month in last 12 months (OR:

0.93, 95 % CI: 0.79 to 1.09), although the difference was also not significant.

Fig. 5.5(b) shows that the odds of getting infected with HIV increases up to a

certain age and then starts dropping at an increasing rate. This figure exhibits

similar patterns to those shown in Fig. 5(a) except that the ages of respondents for

Fig. 5.5(a) do not go beyond 49.
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5.4.4 Spatial effects

Figure 5.6: Posterior means of random effects from bivariate model: (a) Spatial
random effects (NHSS data); (b) spatial random effects (NDHS) data

The maps of spatial random effects can be obtained from Fig. 5.6 and Fig. 5.7.

Both figures show that health districts and constituencies in the northern part of

Namibia were more likely to be associated with HIV infection (i.e. positive posterior

means of spatial random effects) whereas most of the rest of the health districts and

constituencies had a reduced association with HIV infection (i.e. negative posterior

means spatial random effects). Fig. 5.6(a) shows the association of HIV infection

with Namibia health districts. A positive posterior mean of random effects indicates

a health district with a high risk of HIV infection whereas a negative posterior

mean implies a relatively reduced likelihood of HIV infection. From this figure,

it can be deduced that in the northern part of Namibia, Katima Mulilo, Andara,

Rundu, Onandjokwe, Okahao, and Engela health districts are highly associated

with HIV infection. In the central east, Walvis Bay and Usakos health districts

are significantly associated with HIV infection. In the south, Luderitz is highly
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related to HIV infection. The rest of the health districts had a reduced association

with HIV infection. Fig. 5.6(b) presents the posterior means of random effects of

constituencies. The interpretation of random effects is the same as the one presented

in Fig. 5.6(a). The spatial distribution of HIV infection risk in constituencies is

very similar to the spatial distribution of HIV infection observed in health districts.

Constituencies that are highly related with HIV infection are found in the northern

part of Namibia, specifically in Caprivi, Kavango, Omusati, and Oshana, Oshikoto,

and Ohangwena regions. In central east of Namibia, Walvis Bay constituency showed

a moderate association with HIV infection whereas in the south Keetmanshoop

urban and Oranjemund were found to be moderately related to HIV infection.

5.5 Discussion

In this study, a bivariate model controlling for spatial random effects was fitted. A

full Bayesian framework through SPDE approach with INLA was implemented by

jointly modelling the two data sources available at two different spatial levels. Thus,

this joint model approach had to deal with data that were spatially misaligned. The

bivariate model, which used a spatial shared component that acts as a surrogate of

HIV risky behaviours among pregnant women in order to improve the estimation

of HIV prevalence using the NDHS source, was found to be more appropriate in

estimating HIV prevalence. The interaction parameter γ = 2.14 (95 % CI: 1.65 to

3.67), described how much of the structure captured in the shared component and

also inherent in the NDHS HIV prevalence, was found to be significant. Hence,

the joint analysis of NDHS and ANC sources has enhanced the estimation of HIV

prevalence using the demographic and health survey (NDHS). This finding concurs

with results from the study by Manda et al. (2015).

As everything that rises must converge (Sterman, 2000), it is argued that no quan-

tity can grow for ever. Thus, the effect of age on HIV infection was considered

to follow a growth trajectory with the two chronological patterns, namely a grad-

ual increase from the beginning until the maximum is reached, and thereafter a

gradual decrease. Consequently, it could have been inappropriate to assume that

there is a linear relationship between age and the HIV infection. Therefore, in this

140



study, the effect of age on HIV infection was modelled using first order random walk.

For these two data sources, the relationship between age and its effects on HIV infec-

tion followed an inverted U shape. This finding agrees with other studies (Okango

et al., 2015; Ngesa et al., 2014).

The place of residence was found to be significantly associated with HIV infec-

tion. Individuals in urban areas had a high risk of getting infected compared those

those in rural areas. This finding has been reported in many other studies (Manda

et al., 2015; Okango et al., 2015; Ngesa et al., 2014; Amornkul et al., 2009). It could

be used to design focused public campaigns against HIV/AIDS such as campaigns

for volunteer testing and the use of condoms and antiretroviral therapy based on

the place residence.

This study had shown that poverty levels were inversely associated with the likeli-

hood of HIV infection. People in the middle class, rich class, and richest class had

less risk of getting infected with HIV relative to those in the lower class. In a similar

study (Chege et al., 2012), unwanted or forced sex was related to lack of resources

and the ability to obtain resources.

In this study, HIV infection was found to be significantly related with the head

of a household. Individuals living in a household headed by a woman were associ-

ated with higher risk of testing positive compared to the ones living in a household

headed by a man. It has been shown that male-headship is a proxy of a better

socio-economic status (Musenge, Vounatsou, Collinson, Tollman, & Kahn, 2013),

which has been proven to be inversely related to HIV infection. This finding could

be explained by the complex of inferiority of women (Mufune, Kaundjua, & Kauari,

2014) and the struggle to obtain leadership positions and power to make decisions

(Chege et al., 2012).

Another finding of this study is that gender was significantly associated with HIV

infection. The likelihood of women to test HIV positive is high than that of men.

Some of the possible explanations for this finding are gender inequality in the
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sex intimacy and relationship, multiple partners perceived as prestigious for boys,

and the complex of inferiority among girls in the presence of boys (Mufune et al.,

2014). The gender and HIV infection relationship was confirmed in many studies

(Manda, Masenyetse, Cai, & Meyer, 2015; Amornkul et al., 2009; Chege et al., 2012;

Barankanira, Molinari, Niyongabo, & Laurent, 2016).

It was found that marital status impacts on HIV infection. Widowers had a high

likelihood of being infected with HIV. One of the possible justifications for this find-

ing could be that most widowers were left by partners who died of HIV. Though

differences were not significant, odds of HIV infection were higher for divorced in-

dividuals and those who no-longer lived with partners compared to those who were

never in a union. This result could be useful in designing strategies and interven-

tions intended for vulnerable groups especially widowers. Some earlier works have

already indicated similar results (Manda et al., 2015; Okango et al., 2015; Amornkul

et al., 2009; Barankanira et al., 2016).

Another well-known finding in many studies (Okango et al., 2015; Ngesa et al.,

2014; Chege et al., 2012), which was also found in this study is that education was

negatively associated with HIV infection. The likelihood of testing positive was low

among men and women with higher education as compared to those with no educa-

tion. This could be due to the fact that most individuals with higher education are

matured and aware of the danger of HIV and they are less sexually active. Though

the difference is not significant, individuals with primary and secondary education

were found to be at a high risk of contracting HIV as compared to those who never

had any formal education. This finding could be related to limited sexual education

in Namibian schools. Although life-skills programmes tailored to equip learners with

sexuality knowledge are implemented in Namibian schools, it has been argued that

there is no proper training provided to teachers in this matter and also that students

do not take this subject seriously as it is not examinable (Mufune et al., 2014). As

the Namibian government is committed to provide education to all Namibians (Gov-

ernment, 2002), this finding could be used by the Government to realise the need of

extending free education to other phases of formal education in order to increase the

number of potential individuals who will eventually achieve high education. Also,
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it could be used as an indicator of a need to revise the life-skills curriculum and the

implementation of exams for this subject in order to encourage learners to take it

seriously.

Contrary to general myths, condom use was found to be positively related to HIV

infections. Individuals who hadr used a condom during the last sexual intercourse

were at a higher risk of contracting HIV as compared to those who did not use a

condom. This unexpected result was also reported in the work of Ngesa et al. (2014).

One of the justifications provided for this finding was that men use condoms in the

earlier stage of a relationship with their sexual partners and later on give up on

using them.

Another possible justification to this finding could be that many of the condom users

knew their HIV status (positive) and make use of condoms to protect their partners.

Also, it could be that some respondents want to show-off that they are practicing

safe sex, when in fact they are not. As such you find these conflicting results of high

HIV prevalence and yet there is an increased uptake of condoms. So there might be

issues of unsustained or inconsistent use of condoms leading to positive association

with HIV prevalence.

It was also found that the number of kids already dead had a positive significant

effect on HIV infection. The likelihood of getting infected with HIV for men and

women who had one or more of their children dead was higher than that of those

whom none of their children died. This might imply that kids could have been

infected by their mothers. With respect to this outcome, the Ministry of Health

and Social Services should redouble its efforts in the implementation of prevention

of mother-to-child transmission of HIV/AIDS programmes until the mother to child

transmission rate which was about 2 % in 2013 (MoHSS, 2014a) drops to 0 %.

With respect to sexual behaviour or biological characteristics such as sexual ac-

tivity, age at first sex and STI, this study has found that these characteristics of

sexual or biological behaviour are associated with HIV infection. This result could

be used to identify groups with a high risk where greater efforts should be directed.

In disease mapping, the identification of areas correlated with high risk proves to
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be useful in designing preventative and intervention strategies such as HIV testing

campaigns, accessibility and use of condoms, antiretroviral treatment, and efficient

budget allocation. According to the findings of this study, great efforts in terms of

primary and secondary HIV interventions should be concentrated to constituencies

in the northern part of Namibia.

This study made use of a shared component through the SPDE approach to anal-

yse jointly the two sources of data and it presented two major strengths. Firstly,

the joint modelling approach developed in this study allowed to combine two data

sources that are available at different spatial levels in a single model. Secondly,

unlike other studies that assumed a same underlying spatial process for different

sources, with the bivariate model developed it is possible to specify different spatial

processes (e.g. a Poisson and Bernoulli processes) through the link function. A

number of significant weaknesses of this study are acknowledged. Firstly, due to

confidentiality issues, the positions of HIV cases were randomly displaced in the

NDHS data source. This study did not take into account the bias that might be

induced by such displacements. Therefore, the interpretation of the study findings

should take into account this limitation. Secondly, the missingness is quite com-

mon in NDHS and NHSS data sets. This might somehow distort the geographical

distribution pattern of disease. Nevertheless, we hope that the spatial smoothing

approach employed in this study might have lessened an aberrant.

5.5.1 Conclusion

This study has shown the determinants of HIV infection in Namibia and has revealed

areas at high risk of HIV infection through HIV prevalence mapping. The findings

from this study and the prevalence maps produced could be used by the Ministry

of Health and Social Services and any other health policy makers to identify groups

of people in need of HIV support and where they live in order to efficiently allo-

cate resources that are increasingly becoming scarce. Moreover, the study used a

bivariate modelling approach that helped in dealing with spatially misaligned data.

Additionally, the study has shown that the prediction of HIV prevalence using the

DHS data source can be enhanced by jointly modelling other HIV data.
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5.6 Supplemetary results

Figure 5.7: Posterior means of random effects from univariate models: (a) Spatial
random effects (NHSS data); (b) spatial random effects (NDHS data)

Table 5.10: Estimated covariate effects and their 95 % credible intervals (CI): Sep-
arate model for NHSS data

Covariate OR 95 % CI
β01 0.12 (0.09,0.17)
Prima-gravida 1.00
Multi-gravida 1.89 (1.52,2.34)
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Table 5.11: Estimated covariate effects and their 95 % credible intervals (CI): Sep-
arate model for NDHS data

Covariate OR 95 % CI
Beta 0.08 (0.03,0.21)
Place of residence
Rural (Ref) 1.00
Urban 1.57 (1.30, 1.89)

Head of household
Male (Ref) 1.00
Female 1.14 (0.97, 1.33)
Marital status
Never in union (Ref) 1.00
Married 0.72 (0.58, 0.89)
Living with a partner 1.43 (1.17, 1.75)
Widowed 1.49 (1.07, 2.05)
Divorced 1.09 (0.67, 1.76)
Separated 1.44 (1.06, 1.95)

Number of kids dead
No child died (Ref) 1.00
one child died 1.86 (1.49, 2.31)
More one than one child died 2.74 (1.88, 3.99)
Education
No education (Ref) 1.00
Primary 1.09 (0.87, 1.38)
Secondary 0.85 (0.67, 1.08)
Higher 0.63 (0.41, 0.96)
Wealth index
Poorest (Ref) 1.00
Poorer 1.1 (0.89, 1.36)
Middle 1.00 (0.80, 1.25)
Richer 0.77 (0.60, 1.00)
Richest 0.32 (0.23, 0.46)
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Table 5.12: Estimated covariate effects and their 95 % credible intervals (CI): Sep-
arate model for NDHS data (Continued)

Covariate OR 95 % CI
Stayed away from home
Did not moved away(Re) 1.00
Moved awayed 0.93 (0.79, 1.08)
Never had sex (Ref) 1.00
Not active 0.98 (0.90, 1.07)
Active 1.15 (1.06, 1.26)
Age at first sex
Never had sex(Ref) 1.00
≤ 11 1.29 (0.89, 1.96)
12 to 14 1.09 (0.68, 1.76)
15 to 17 1.49 (1.01, 2.23)
≥ 18 or at first union 1.28 (0.87, 1.92)
Condom used
No (Ref) 1.00
Yes 1.78 (1.53, 2.07)
Had STI in last 12 months

No (Ref)
Yes 1.06 (0.96, 1.16)
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Chapter 6

Conclusions

With the increasing availability of geographically referenced data, linking of collected

data is indeed unavoidable as the exploitation of this readily available information

helps in avoiding the implementation of new and expensive data collection. Proper

statistical methodology is needed in order to deal with various aspects related to the

analysis of geocoded data and to develop suitable statistical methods. In this dis-

sertation, we addressed various aspects related to the analysis of spatial misaligned

and mismeasured data with an inclination towards its application to measles and

HIV. In this chapter, we revisit our primary objectives in order to evaluate whether

they have been achieved, then we draw conclusions and make recommendations for

improvements and future studies.

6.1 Review and evaluation of the objectives

• Multi-step modelling approach in order to analysis misaligned measles

data in Namibia

With measles data, we wanted to develop a model that can be used to estimate and

map the risk of measles at sub-regional level in Namibia, using data obtained at

regional level. We were able to develop a multi-step modelling approach that can

use data obtained at region level in order to estimate and map the risk of measles

at sub-regional level in Namibia.
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• Spatio-temporal modelling while dealing with misalignment and mea-

surement error

The multi-step modelling approach was extended to include temporal aspect and

relax the assumption of näıve analyses that assume covariates to be observed without

errors.

• Joint modelling of national HIV sentinel surveillance (NHSS) and

Namibia demographic and health survey (NDHS) HIV data

We presented a bivariate modelling approach that helped in dealing with spatially

misaligned data. Additionally, we have shown that the prediction of HIV prevalence

using the DHS data source can be enhanced by jointly modelling other HIV data

such as NHSS data.

6.2 Lessons learnt

In this dissertation, we addressed various aspects related to the analysis of misaligned

and mismeasured data and joint modelling data obtained from multiple sources with

an inclination towards application to measles data and HIV prevalence from antena-

tal sentinel and demographic and health surveys in Namibia (i.e. NHSS and NDHS).

A mere presentation of summary statistics from statistical analyses may have little

impact. A successful dissemination of results should have the purpose of informing

the target audience about the findings and strategies for possible interventions. A

particular strength of the disease mapping is that summary statistics can be vi-

sualized through maps which enhance an effective communication. We generated

diseases risk maps for both HIV and measles, which represent important tools for

the health sector to plan, evaluate and make important policy decisions particularly

for geographically targeted interventions in resource poor settings.
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Modelling spatial patterns of misaligned disease data

In Chapter 3, we presented a new method (i.e. multi-step method) that allows

to estimate and map the risk of measles at sub-regional level in Namibia, using data

obtained at regional level. This approach was applied to correct the misalignment in

the data. It consisted of overlaying constituencies on regions in order to determine

exactly what proportion of a given constituency is infected by measles, and apply-

ing spatial smoothing techniques to the computed measles cases to estimate disease

risks. Our approach was compared with the conventionally used direct approach

which is commonly used in ecology to downscale the distribution of species from

coarse scale to fine scale and results showed that the multi-step approach model

provided a relatively better model. Other approaches to downscale the distribution

of species from coarse scale to fine scale such as hierarchical Bayesian method for

interpolation, estimation and spatial smoothing (e.g. Banerjee et al. (2004); Araújo

et al. (2005); Keil et al. (2013); Lee & Sarran (2015); Roli & Raggi (2015)) are

commonly used. However, this class of methods relies heavily on the availability of

information on a set of covariates (e.g vegetation, roads, rivers) on both grids (Roli

& Raggi, 2015). In the absence of covariates information, they become impractical.

Modelling spatio-temporal patterns of disease for spatially misaligned

and mismeaured data

In Chapter 4, we extended the multi-step approach by including the temporal effects

and accounting for measurement errors. We introduced classical measurement er-

ror models in covariates to improve the spatio-temporal ecological regression model.

Comparison of the results obtained from the näıve (i.e. modelling that ignored

errors in covariates) method and those from the approach that accounts for mea-

surement errors indicated that the latter modelling approach performed better than

the former. Additionally, some covariates that were not statistically significantly

associated with the risk of measles when the näıve approach was used became sig-

nificant. These results led us to conclude that some other approach has to be taken

in order to handle measurement errors in data.
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Otherwise, analyses could produce inaccurate estimates and incorrect conclusions.

The error model we presented is just one of the possible alternatives to deal with

measurement errors. But, it is a useful approach to correct the measurement errors

in data and improve inferences in situations where mismeasured values in covariates

are encountered instead of näıve analyses.

Joint modelling of national HIV sentinel surveillance (NHSS) and Namibia

demographic and health survey (NDHS) HIV data

In Chapter 5, we made use of a shared component through the SPDE approach

to jointly analyse the two sources of data. Our modelling approach presented three

major strengths. Firstly, the joint modelling approach developed allowed to combine

two data sources that are available at different spatial levels in a single model.

Secondly, unlike other studies that assumed a same underlying spatial process for

different sources, with the bivariate model developed it is possible to specify different

spatial processes (e.g. a Poisson and Bernoulli processes) through the link function.

Thirdly, the dissertation has shown that the prediction of HIV prevalence using the

DHS data source can be enhanced by jointly modelling other HIV data such as

NHSS data.

6.3 Future research directions

In modelling spatial and spatio-temporal patterns of spatially misaligned measles

data, old administrative boundaries, which matched existing covariates were used.

However, the administrative boundaries have changed over time. Future studies

could focus on using new boundaries that do not match necessarily with available

covariate information as changing boundaries would introduce a misalignment be-

tween the response and covariates.

Despite clear advances in geographic information systems (GIS) and internet which

make it easier to access spatial data in various forms, the ethical, policy and legal

concerns still make it difficult to access the readily detailed information of individual
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persons. In demographic health surveys (DHS), to preserve the confidentiality of

individuals, the positions of HIV cases are randomly displaced. This displacement

might induce a bias in estimation and inferences. Attention to the further develop-

ment of appropriate analytical methods that could facilitate to quantify and correct

the impact of displacements of disease cases would add value to statistical litera-

ture as no study had looked into this issue so far. Furthermore, future work would

consider extensions of the joint modelling approach presented in chapter 5. Further

studies can be directed into the joint modelling of more than two data sources in

order to enhance the prediction of HIV prevalence. A generalised shared compo-

nent modelling within SPDE framework is a possible choice. Moreover, all models

presented in chapter 3, 4, and 5 can be extended through the incorporation of a

temporal misalignment component.
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Appendix A

Appendix: R Codes

This appendix is subdivided into three main parts, namely, Codes of modelling

spatially misaligned data :measles data, spatio-temporal modelling codes, and Joint

modelling of NDHS and NHSS HIV prevalence codes. R-programmes require that

all comments and other documentations are preceded by the symbol # and the

commands are just statements. To avoid any confusion our codes are written within

R program requirements so that these codes can be used by anyone without changing

anything.

A.1 Spatial modelling data: measles data (Chap-

ter 3)

#Load the package for building the map and import the shapefile

library(splines)

library(sp)

library(maptools)

library(Matrix)

library(spdep)

library(INLA)

library(foreign)

library(shapefiles)

library(BayesX)

library(lattice)
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library(maps)

library(mapproj)

library(RColorBrewer)

library(latticeExtra)

library(CARBayes)

library(gridExtra)

# Load shapefile

shape = readShapePoly("G:\\Article\\Constituencies_shapefiles\\

Old_Constituency_Boundaries_107.shp")

shape@data

# Create neighbourhood structure/adjacency matrix

neig <- poly2nb(shape)

# plot neighbourhood

plot(shape, border=gray(.5))

plot(neig, coordinates(shape), add=TRUE)

#Set up INLA call; Convert it into an inla neighbourhood object

neig.inla = nb2INLA("neig", neig) # empty variable, file is saved

#Create areas IDs used here

shape$ID<-1:nrow(shape@data)

#Read data

data<-read.csv("G:\\Article\\Measles-constituencies-covariates3.csv")

# Put the data into shape@data

old.shape = shape

shape<-data.frame(shape@data,data,shape$ID)
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#Plot Moran I scatter plot, Moran I(local), and probability

of most significant Moran I (Chapter 3, Figure 3.1)

moran.plot(data$case, listw = const_neighb,xlab="Measles cases"

, ylab="Spatially lagged measles cases")#plotting moran I

loc<-localmoran(data$case, listw = const_neighb)#Local moranIs moran I

min<-min(data$local.Ii)

max<-max(data$local.Ii)

old.shape$local.Ii=data$local.Ii

spplot(old.shape, "local.Ii",at=c(-2,0,2,4,5),main="(a)",

col.regions = rainbow(99, start=.1))

min<-min(data$p)

max<-max(data$p)

old.shape$p=data$p

spplot(old.shape, "p",at=c(0,0.05,0.5,1), main="(b)",

col.regions = rainbow(99, start=.1))

par(mfrow=c(1,2))

grid.arrange(spplot(old.shape, "local.Ii",at=c(-2,0,2,4,5),

main="(a)",col.regions = rainbow(99, start=.1))

,spplot(old.shape, "p",at=c(0,0.05,0.5,1), main="(b)",

col.regions = rainbow(99, start=.1)),ncol=2)

#Prepare the Besag model and run INLA

formula0 <- case ~ 1+ f(shape$ID,model="besag",graph=’neig’)

besag.model <- inla(formula0,family="poisson",data=data,E=E,

control.compute=list(dic=TRUE,cpo=TRUE))

#Preparing a model with covariates
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formula1 = case~1+SAHHS+EmployR+case2004+SBrate+Vacc+

f(shape$ID, model="besag", graph="neig")

m1 = inla(formula1, family="poisson", E=E, data=as.data.frame(shape),

control.compute = list(config = TRUE),

control.predictor=list(compute=TRUE))

#Calculate and map zeta (relative risk) (where csi=upsilon + nu)

m <- m1$marginals.random$‘shape$ID‘

zeta1 <- lapply(m,function(x)inla.emarginal(exp,x))

old.shape$SMR=unlist(zeta1)

spplot(old.shape, "SMR",at=c(0.4,0.8,1,2,4))

#map random effects

besag1<-m1$summary.random$‘shape$ID‘

old.shape$RE=besag1$mean

spplot(old.shape, "RE",at=c(-0.75,0,0.5,1,1.5),main="a")

#Plot Relative risk for direct method

old.shape$RR=data$RR

spplot(old.shape, "RR",at=c(0.1,1,2,3,4,11.5),main="(a)")

spplot(old.shape, "RR")

#Plot Relative risk for multi-step and direct method (chapter 3, Figure 3.2)

par(mfrow=c(1,2))

grid.arrange(spplot(old.shape, "SMR",at=c(0.4,0.8,1,2,4),main="(a)",

col.regions = rainbow(99, start=.1))

,spplot(old.shape, "RR",at=c(0,1,2,6,8,11.5),main="(b)",

col.regions = rainbow(99, start=.1)),ncol=2)

# boxplot (Figure 3.3)

boxplot(data$SresD ~ data$Method,xlab="Method",ylab="Standardized residuals")
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data<-read.csv("G:\\Article\\Measles-regions-predicted_Residualsr.csv")

#( contains response variable (Y), covariate(X), and expected cases (E)

A.2 Spatio-temporal modelling data: measles data

(Chapter 4)

#0. Draw maps of regional measles incidence rates (chapter 4, Figure 4.1)

#Regions

shape = readShapePoly("G:\\Article\\Regional_boundaries\\Regional_boundaries")

shape@data

#Create areas IDs used here

shape$ID<-1:nrow(shape@data)

data<-read.csv("G:\\Article\\Measles-regions-IncidenceRate.csv")

### Put the data into shape@data

old.shape = shape

shape<-data.frame(shape@data,data,shape$ID)

old.shape$Prev1<-data$IR1

old.shape$Prev2<-data$IR2

old.shape$Prev3<-data$IR3

old.shape$Prev4<-data$IR4

old.shape$Prev5<-data$IR5

old.shape$Prev6<-data$IR6

old.shape$Prev7<-data$IR7

old.shape$Prev8<-data$IR8

old.shape$Prev9<-data$IR9

old.shape$Prev10<-data$IR10

spplot(old.shape, c("Prev1","Prev2","Prev3","Prev4","Prev5","Prev6",
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"Prev7","Prev8","Prev9","Prev10")

,names.attr=c("2005","2006","2007","2008","2009","2010","2011",

"2012","2013","2014"),col.regions = rainbow(99, start=.1), layout=c(5,2))

# Model building

#1. Load the neighbourhood structure and data

#Load the neighbourhood structure

g="G:\\Article\\graph.dat.txt"

#Load the data

data<-read.csv("G:\\Article\\Measles-constituencies-spatio-tempo.csv")

#2. Build models without covariates

# Besag model

formula0 <- case ~ 1+ f(ID2,model="besag",graph=g)

besag.model1 <- inla(formula0,family="poisson",data=data,E=Ee,

control.compute=list(dic=TRUE,cpo=TRUE))

#CAR model

formula1 <- case ~ 1+ f(ID2,model="bym",graph=g)

CAR.model1 <- inla(formula1,family="poisson",data=data,E=Ee,

control.compute=list(dic=TRUE,cpo=TRUE))

# IID model

formula2 <- case ~ 1+ f(ID2,model="iid")

IID.model1<- inla(formula2,family="poisson",data=data,E=Ee,

control.compute=list(dic=TRUE,cpo=TRUE))

#3.Parametric models: alpha + csii + (deltai + beta)*year, with covariates

formula7 <- case ~- 1+Malnou+Edu+LPrevCase+LFUnEmployR+LST+Vacc

+f(ID2,model="iid",graph=g)+f(ID1,Year.ID1,model="rw1")

IID.parametric.model1 <- inla(formula7,family="poisson",data=data,E=Ee,

control.compute=list(dic=TRUE,cpo=TRUE))

formula7bym <- case ~ -1+Malnou+Edu+LPrevCase+LFUnEmployR+LST+Vacc

+f(ID2,model="bym",graph=g)+f(ID1,Year.ID1,model="rw1")

bym.parametric.model1 <- inla(formula7bym,family="poisson",data=data,E=Ee,
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control.compute=list(dic=TRUE,cpo=TRUE))

formula8 <- case ~-1+Malnou+Edu+LPrevCase+LFUnEmployR+LST+Vacc

+f(ID2,model="besag",graph=g)+f(ID1,Year.ID1,model="rw1")

Besag.parametric.model3 <- inla(formula8,family="poisson",data=data,E=Ee,

control.compute=list(dic=TRUE,cpo=TRUE))

#4. Build non-parametric model with no space time interaction:

alpha + csii + gammaj + phij

#csii and are modelled through BYM

#gammaj are modelled as RW1 and rw2

#phij are modelled as exchangeable

formula9 <- case ~ 1+Edu+LPrevCase+LFUnEmployR+LST+Vacc

+f(ID2,model="bym",graph=g)+f(Year.ID1,model="rw1")+f(Year.ID2,model="iid")

BYM.nonparametric.model1 <- inla(formula9,family="poisson",data=data,E=Ee,

control.compute=list(dic=TRUE,cpo=TRUE))

#5. Build non-parametric model with time space interaction:

alpha + csii + gammaj + phij + deltaij,

#csii are modelled through BYM

#gammaj are modelled as RW1

#phij are modelled as exchangeable

#Interaction (deltaij) is modelled as exchangeable

formula10cov <- case~-1+Malnou+Edu+LPrevCase+LFUnEmployR+LST+Vacc

+f(ID2,model="bym",graph=g)+f(Year.ID1,model="rw1")

+f(Year.ID2,model="iid")+f(constituency.year.ID,model="iid")

BYM.IID.nonparametric.model2cov1 <- inla(formula10cov,family="poisson",data=data,

control.compute=list(dic=TRUE,cpo=TRUE))

#6. Create the corresponding linear combinations

lcs = inla.make.lincombs(Year.ID1= diag(10), Year.ID2 = diag(10))

#7. Include classical error model (mec)
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Malnou1=data$Malnou+runif(1070,min=0.0000001, max=0.0000002)

LFUnEmployR1=data$LFUnEmployR+runif(1070,min=0.0000001, max=0.0000002)

MEdu1=data$Edu+runif(1070,min=0.0000001, max=0.0000002)

LST1=data$LST+runif(1070,min=0.0000001, max=0.0000002)

Vacc2=data$Vacc+runif(1070,min=0.0000001, max=0.0000002)

data<-data.frame(data,Malnou1,LFUnEmployR1,MEdu1,LST1,Vacc2)

prior.beta = c(0, 0.0001)

prior.prec.u = c(1, 0.0005)

prior.prec.x = c(1, 0.0005)

prior.prec.y = c(1, 0.0005)

prec.u = 1

prec.x=1

formula10covbE6 <- case ~+1+Edu+LPrevCase+LST+Vacc+f(ID2,model="bym",graph=g)

+f(Year.ID1,model="rw1")+f(Year.ID2,model="iid")

+f(constituency.year.ID,model="iid")

+f(Malnou1, model="mec",values=Malnou1,

hyper = list(beta = list(prior = "gaussian",param = prior.beta,

fixed = FALSE),

prec.u = list(prior = "loggamma",

param = prior.prec.u,

initial6= log(prec.u),

fixed = FALSE),

prec.x = list(prior = "loggamma",

param = prior.prec.x,

initial = log(prec.x),

fixed = FALSE),

mean.x = list(prior = "gaussian",

initial = 0,

fixed=TRUE)))

+f(LFUnEmployR1, model="mec",values=LFUnEmployR1,hyper =

list(beta = list(prior = "gaussian",

param = prior.beta,fixed = FALSE),

prec.u = list(prior = "loggamma",
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param = prior.prec.u,

initial = log(prec.u),fixed = FALSE),

prec.x = list(prior = "loggamma",param = prior.prec.x,

initial = log(prec.x),fixed = FALSE),

mean.x = list(prior = "gaussian",initial = 0,

fixed=TRUE

)

)

)

BYM.IID.nonparametric.model2covbE6 <- inla(formula10covbE6,family="poisson",

data=data,

list(lincomb.derived.only=TRUE), control.compute=list(dic=TRUE,cpo=TRUE))

#8. Boxplot of temporal random effects :

marginal<-lapply(BYM.IID.nonparametric. model2covbE6$marginals.lincomb.derived,

function(X){

marg <- inla.tmarginal(function(x) exp(x), X)

inla.emarginal(marg)})

marginal<-unlist(marginal)

marginal<-round(marginal,4)

write.csv(marginal,file="G:\\Article\\marginal_temporal.csv") # save the marginal as

a csv file

marginal_temporalmodified<-read.csv("G:\\Article\\marginal_temporalmodified.csv")

boxplot(marginal_temporalmodified$Effect ~ marginal_temporalmodified$Year,

xlab="Year", ylab="Temporal effect")

abline(h=1,lty=2)

#9. Plot maps of spatial random effects (Figure 4.4)

besag2<-BYM.IID.nonparametric. model2covbE6$summary.random$ID2

namibia<-read.bnd("C:\\Users\\Dismas\\Desktop\\Article\\namSW1.csv")

namibia<-read.bnd("G:\\Article\\namSW1.csv")

#Grey scheme (two maps in one frame)

par(mfrow=c(1,2), mar=c(3,3,.5,.5), mgp=c(1.5,.5,0), las=1)

drawmap(data=besag2,map=namibia,regionvar="ID",
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plotvar="mean",swapcolors=T,cols="grey",limits=c(-0.85,1.38),density=36,

drawnames=F,cex.legend=1,cex.names=1, main="(a)")

drawmap(data=besag2,map=namibia,regionvar="ID",

plotvar="mean",swapcolors=T,cols="grey",pcat=T,density=36,

drawnames=F,cex.legend=1,cex.names=1, main="(b)")

#10. Plot map of probability (Figure 4.3)

# Calculating zeta=exp(csi) where csi=upsilon + nu

m1 <- BYM.IID.nonparametric. model2covbE6$marginals.random$ID[1:107]

zeta1 <- lapply(m1,function(x)inla.emarginal(exp,x))

#Calculating the probability that the spatial effects zeta are above 1,

#identifying areas with excess risk of measles. This is equivalent to

#calculate the probability that csi is above 0,

a=0

inlaprob1<-lapply(BYM.IID.nonparametric. model2covbE6$marginals.random$ID[1:107],

function(X){ 1-inla.pmarginal(a, X)

})

Spatial.results1<- data.frame(ID=seq(1,107),SMR=unlist(zeta1),pp=unlist(inlaprob1))

drawmap(data=Spatial.results1,map=namibia,regionvar="ID",

plotvar="pp",swapcolors=T,cols="grey",limits=c(0.000,1),density=36,

drawnames=F,cex.legend=1,cex.names=1)

A.3 Joint modelling of NDHS and NHSS HIV

prevalence codes (Chapter 5)

# 1. Draw maps of HIV raw prevalence at district and constituency level (Figure 5.2)

###1. Load district shapefile& data
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shape1 = readShapePoly("G:\\districtric_boundaries\\BDR_health districts")

### Create neighbourhood/adjacency matrix

# neig: neighbourhood structure

neig1 <- poly2nb(shape1)

# plot neighbourood

plot(shape1, border=gray(.5))

plot(neig1, coordinates(shape1), add=TRUE)

### Set up INLA call

# Convert it into an inla neighbourhood object

neig.inla = nb2INLA("neig1", neig1) # empty variable, file is saved

#Create areas IDs used here

shape1$ID<-1:nrow(shape1@data)$

data1<-read.csv("G:\\DHS2013 datasets\\District_HIV_ prevalence.csv")

### Put the data into shape@data

old.shape1 = shape1

shape1<-data.frame(shape1@data,data1,shape1$ID)

# Get mean estimates

old.shape1$prevalence = data1$Prevalence

#-----------------------------------------#

###2.load shapefile $data at constituency level##

shape2 = readShapePoly("G:\\Constituencies_shapefiles
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\\Old_Constituency_Boundaries_107.shp")

### Create neighbourhood/adjacency matrix

# neig: neighbourhood structure

neig2 <- poly2nb(shape2)

# plot neighbourood

plot(shape2, border=gray(.5))

plot(neig2, coordinates(shape2), add=TRUE)

### Set up INLA call

# Convert it into an inla neighbourhood object

neig.inla = nb2INLA("neig2", neig2) # empty variable, file is saved

#Create areas IDs used here

shape2$ID<-1:nrow(shape2@data)

data2<-read.csv("G:\\DHS2013 datasets\\Const_HIV_Prevalence.csv")

### Put the data into shape@data

old.shape2 = shape2

shape2<-data.frame(shape2@data,data2,shape2$ID)

# Get mean estimates

old.shape2$CombinedPrevalence = data2$CombinedPrevalence

#---------------------------------------------------#

#3. Plot maps of raw HIV prevalences for districts

$ constitituencies in one frame

#dev.off()

par(mfrow=c(1,2), mar=c(3,3,.5,.5), mgp=c(1.5,.5,0), las=1)
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grid.arrange(spplot(old.shape2, "CombinedPrevalence",

at=c(0,3,10,15,20,25,40),main="(a)") ,spplot(old.shape1, "prevalence",at=c(0,3,10,15,20,25,40),main="(b)")

,ncol=2)

# 2. Fit joint models

The execution of joint modelling is achieved in two main steps,

namely the main functions (Functions) and codes (Codes) to execute main functions.

A.3.1 Functions

# wrapper function to create a mesh object as used in an INLA model fit

make.mesh<-function(locs = NULL, mesh.pars = NULL, spatial.polygon = NULL,

sphere = FALSE, plot = FALSE){

if(is.null(mesh.pars)){

if(is.null(spatial.polygon)){

w <- ripras(locs)

mesh.pars <- c(max = 0.15*sqrt(area(w)) ,

min = 0.1*sqrt(area(w)),

cutoff = 0.15*sqrt(area(w)))

}else{

w <- spatial.polygon

mesh.pars <- c(max = 0.15*sqrt(area(w)),

min = 0.1*sqrt(area(w)),

cutoff = 0.15*sqrt(area(w)))

}

}

# getting mesh parameters

max.edge.min <- mesh.pars["min"]

max.edge.max <- mesh.pars["max"]

if(is.na(max.edge.max)){max.edge <- max.edge.min}

else{max.edge <- c(max.edge.min,max.edge.max)}
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cutoff <- mesh.pars["cutoff"]

mesh.pars<-c(max.edge,cutoff)

if(!sphere){

if(!is.null(spatial.polygon)){

# creates triangulation based on a spatial polygon of the domain

boundary <- inla.sp2segment(spatial.polygon)

mesh <- inla.mesh.2d(boundary = boundary, max.edge = max.edge,

cutoff = cutoff)

} else {

loc <- locs

# creates triangulation based on the locations of the point pattern

mesh <- inla.mesh.2d(loc = locs, max.edge = max.edge, cutoff = cutoff)

}}

if(sphere){

if(!is.null(spatial.polygon)){

# creates triangulation based on a spatial polygon of the domain

projected onto a sphere

boundary <- inla.sp2segment(spatial.polygon)

boundary$loc <- inla.mesh.map(boundary$loc, projection="longlat",

inverse=TRUE)

mesh <- inla.mesh.2d(boundary = boundary, max.edge = max.edge,

cutoff = cutoff)

} else {

# creates triangulation based on the locations of the point pattern

# projected onto a sphere

locs <- inla.mesh.map(locs, projection="longlat", inverse=TRUE)

mesh <- inla.mesh.2d(loc = locs, max.edge = max.edge, cutoff = cutoff)

}}

if(plot) plot.mesh(mesh)

mesh

}
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# function to fit a joint spatial model to geo-statistical data where one spatial

component is shared between the responses

joint.fit <- function(mesh = NULL, locs.1 = NULL, locs.2 = NULL,

response.1 = NULL, response.2 = NULL, family = c("gaussian","gaussian"),

verbose = FALSE,

hyper = list(theta=list(prior=’normal’, param=c(0,10))),

control.inla=list(strategy=’gaussian’,int.strategy = ’eb’)){

spde <-inla.spde2.matern(mesh = mesh, alpha = 2)

# number of mesh nodes

nv <- mesh$n

## create projection matrix for loacations

Ast1 <- inla.spde.make.A(mesh = mesh, loc = locs.1)

Ast2 <- inla.spde.make.A(mesh = mesh, loc = locs.2)

field.1 <- field.2 <- copy.field <-1:nv

stk.pp <- inla.stack(tag="obs1",data=list(y=cbind(response.1,NA)),

A=list( Ast1,1),

effects=list(field.1 = field.1, beta0 =

rep(1,nrow(locs.1))))

formula <- y ~ 0 + beta0 + alpha0 + f(field.1, model=spde) +

f(field.2, model=spde) +

f(copy.field, copy = "field.1", fixed=FALSE, hyper = hyper )

stk.mark <- inla.stack(tag="obs2",data=list(y=cbind(NA,response.2)),

A=list(Ast2, Ast2,1),

effects=list(field.2 = field.2, copy.field = copy.field,

alpha0 = rep(1,nrow(locs.2))))

## combine data stacks

stack <- inla.stack(stk.pp,stk.mark)

##call to inla

result <- inla(as.formula(formula), family = family,

data=inla.stack.data(stack),

control.predictor=list(A=inla.stack.A(stack)),

control.inla = control.inla,

verbose = verbose,control.compute=list(dic=TRUE))
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result

}

## function that extracts the random fields of the fitted model

find.fields <- function(x = NULL, mesh = NULL, n.t = NULL, sd = FALSE,

plot = FALSE, spatial.polygon = NULL,...){

if(is.null(attributes(x)$mesh) & is.null(mesh)){

stop("no mesh has been supplied")}

if(!is.null(attributes(x)$mesh)){mesh <- attributes(x)$mesh}else{mesh <- mesh}

proj <- inla.mesh.projector(mesh)

if(!is.null(spatial.polygon)) inside <- inwin(proj,as.owin(spatial.polygon))

spde <-inla.spde2.matern(mesh = mesh, alpha = 2)

fields <- names(x$summary.random)

n <- length(fields)

if(!is.null(n.t)){

t <- n.t

means <- list()

for (i in 1:n){

means [[i]] <- lapply(1:t, function(j) { r <- inla.mesh.project(proj,

field = x$summary.random[[i]]$mean[1:spde$n.spde + (j-1)*spde$n.spde]);

if(!is.null(spatial.polygon)) r[!inside] <- NA; return(r)})

}

sds <- list()

for (i in 1:n){

sds [[i]] <- lapply(1:t, function(j) {r <- inla.mesh.project(proj,

field = x$summary.random[[i]]$sd[1:spde$n.spde + (j-1)*spde$n.spde]);

if(!is.null(spatial.polygon)) r[!inside] <- NA; return(r)})

}

if(!is.null(spatial.polygon)) for(i in 1:n){sds[[i]][!inside] <- NA}

if(plot){plot.fields( x = x, mesh = mesh, n.t = n.t, sd = sd,

spatial.polygon = spatial.polygon,...)}

}else{

means <- list()
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for (i in 1:n){

means[[i]] <- inla.mesh.project(proj,x$summary.random[[i]]$mean)

if(!is.null(spatial.polygon)) means[[i]][!inside] <- NA;

}

sds <- list()

for (i in 1:n){

sds[[i]] <- inla.mesh.project(proj,x$summary.random[[i]]$sd)

if(!is.null(spatial.polygon)) sds[[i]][!inside] <- NA;

}

if(plot){plot.fields( x = x, mesh = mesh, n.t = n.t, sd = sd,

spatial.polygon = spatial.polygon,...)}

}

names(means) <- names(sds) <- fields

ifelse(sd,return(sds),return(means))

}

## find which parts of the random field are inside the supplied spatial polygon

inwin<-function(proj, window){

e<-expand.grid(proj$x,proj$y)

o<-inside.owin(e[,1],e[,2],window)

o<-matrix(o,nrow=length(proj$x))

}

##function for plotting random fields called by function find.fields

plot.fields <- function(x = NULL, mesh = NULL, n.t = NULL, sd = FALSE,

spatial.polygon = NULL,col = grey.colors(100,0.05,0.95),...){

proj <- inla.mesh.projector(mesh)

fields <- names(x$summary.random)

n <- length(fields)

par(...)

if(!is.null(n.t)){

rfs <- find.fields(x = x, mesh = mesh, n.t = n.t, sd = sd,

spatial.polygon = spatial.polygon)
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t <- n.t

for(i in 1:n){

for(j in 1:t){ image.plot(proj$x,proj$y,rfs[[i]][[j]],

axes=FALSE,xlab="",ylab="", main = paste(fields[i],

"time", j, sep = " "), col = col)

contour(proj$x,proj$y,rfs[[i]][[j]],add=TRUE)

}

}

}else{

rfs <- find.fields(x = x, mesh = mesh, sd = sd,

spatial.polyon = spatial.polygon)

for(i in 1:n){

image.plot(proj$x,proj$y,rfs[[i]],

axes=FALSE,xlab="",ylab="", main = fields[i], col = col)

contour(proj$x,proj$y, rfs[[i]],add=TRUE)

}

}

}

## function for plotting mesh

plot.mesh <- function(x,...){

plot(x,main="",asp=1,draw.segment = FALSE,...)

if (!is.null(x$segm$bnd))

lines(x$segm$bnd, x$loc, lwd = 2,col = 1)

if (!is.null(x$segm$int))

lines(x$segm$int, x$loc, lwd = 2,col = 1)

}

## plot for individually fitting models to geo-statistical data

geo.fit <- function(mesh = NULL, locs = NULL, response = NULL,

family = "gaussian",verbose = FALSE){

# spde model for the spatial random field

spde <- inla.spde2.matern(mesh, alpha = 2)
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# index

index <- inla.spde.make.A(mesh = mesh, loc = locs)

#create data stack

stack <- inla.stack(data=list(y=response),

A=list( index,1),

effects=list(field = 1:mesh$n, beta0 = rep(1,nrow(locs))))

#nl <- paste("\"",nl.model,"\"",sep="")

formula = y~ 0 + beta0 + f(field, model=spde)

result <- inla(as.formula(formula), family = family ,

data = inla.stack.data(stack),

control.predictor=list(compute=TRUE, A=inla.stack.A(stack)),

verbose = verbose,control.compute=list(dic=TRUE))

result

}

}

A.3.2 Codes

#1. load data (dhs and hss and spatial.polygon)

library(sp)

library(maptools)

library(spatstat)

library(rgdal)

#load("HIVdata.RData")

#source model fitting function etc.

source("functions.r")

#libraries

libs <-c("INLA","fields","maptools","spatstat")

lapply(libs, require, character.only = TRUE)

## read in data for the two data sets

hss.data<-read.csv("C:\\Users\\dntirampeba\\Desktop\\DHS2013 datasets

\\HSS_2014.csv")
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dis1<-hss.data

hss<-data.frame(dis1)

dhs<-read.csv("C:\\Users\\dntirampeba\\Desktop\\DHS2013 datasets\\

MEN_WOMEN_HIV_SPDE1.csv")

dis2<-dhs

dhs<-data.frame(dis2)

## finds the name of the layer

spatial.polygon<-readOGR("Constituencies_shapefiles\\

Old_Constituency_Boundaries_107.shp",

layer = "Old_Constituency_Boundaries_107")

ogrListLayers("G:\\Constituencies_shapefiles

\\Old_constituency_Boundaries_107.shp")

## read in the shapefile

spatial.polygonc<-readOGR("G:\\Constituencies_shapefiles

\\Old_constituency_Boundaries_107.shp",

layer="Old_constituency_Boundaries_107")

spatial.polygond<-readOGR("G:\\districtric_boundaries\\

BDR_health districts.shp",

layer="BDR_health districts")

#save data and spatial polygons together

save(hss,dhs,spatial.polygond,spatial.polygonc, file="DhsHss.RData")

load("DhsHss.RData")

names(dhs)

#2. Define locations: locs

loc.h<- as.matrix(dis1[,14:13])

loc.d<- as.matrix(dis2[,38:37])

##locations and response variables (note here I have whatever is suffix 2 as a copy

## of suffix1

locs.1<- as.matrix(hss[,14:13])

locs.2<- as.matrix(dhs[,38:37])
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response.1 <- hss[,2]

response.2 <- dhs[,39]

##3. Choose (fixed effect) covariates for each response

fixed.covariates.1 <- data.frame(gravida = Hss[,3])

fixed.covariates.2 <- data.frame(edu1 = Dhs[,2],edu2 =Dhs[,3],edu3 =Dhs[,4],

sexhhh=Dhs[,5],awaymonth=Dhs[,6],WealthIndexP=Dhs[,7],WealthIndexM=Dhs[,8],

WealthIndexR=Dhs[,9],WealthIndexRt=Dhs[,10],kidsdead1=Dhs[,11],

kidsdead2=Dhs[,12],mstatus1=Dhs[,13],mstatus2=Dhs[,14],

mstatus3=Dhs[,15],mstatus4=Dhs[,16],mstatus5=Dhs[,17],

agesex1=Dhs[,18],agesex2=Dhs[,19],agesex3=Dhs[,20],

agesex4=Dhs[,21],sexualactivity1=Dhs[,22],sexualactivity2=Dhs[,23],

condomUse=Dhs[,24],STI=Dhs[,25],placeres=Dhs[,27],

gender = Dhs[,31])

## 4.Define nonlinear effect : c("rw1","rw1")

nl.cov.1 <- Hss[,1]

nl.cov.2 <- Dhs[,1]

##5. Visualise data

par(mfrow=c(1,2))

plot(spatial.polygond)

points(locs.1, pch = 18, col = (response.1))

plot(spatial.polygonc)

points(locs.2, pch = 13, col = (response.1+3))

legend("bottomright", legend=c("dhs HIV 0","dhs HIV 1"),pch=c(13,13),

col=c(3,4),bty="n")

## 5. Make mesh & check resolution

mesh.pars <- c(max = 0.5,min = 0.09,cutoff = 0.2 )

mesh <- make.mesh(spatial.polygon = spatial.polygond, mesh.pars = mesh.pars)

plot.mesh(mesh) # Figure 5.1

### 6. Fit a joint model: model fit this is; resp.1 = beta0 + field.1

+ made.up.cov

#resp.2 = alpha0 + field.2 + beta*field.1
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fit <- joint.fit(mesh = mesh, locs.1 = locs.1, locs.2 = locs.2,

response.1 = response.1, response.2 = response.2,

family = c("binomial","binomial"),

fixed.covariates.1 = fixed.covariates.1,

fixed.covariates.2 = fixed.covariates.2,

nl.cov.1 = nl.cov.1, nl.cov.2 = nl.cov.2, verbose = TRUE)

#Split DIC value of the joint model into components(HSS and DHSS)

tapply(fit$dic$local.dic,fit$dic$family,sum)

## function extracts the three random fields of the fitted model as a list

fields <- find.fields(fit, mesh = mesh, spatial.polygon = spatial.polygonc)

## to plot to correct spatial extent (Figure 5.6)

proj <- inla.mesh.projector(mesh)

## now extract the unique spatial estimated random field each variable

par(mfrow=c(1,2))

estRF.1 <- image.plot(proj$x,proj$y,fields[[1]],main="(a)",xlab="",ylab="")

plot(spatial.polygond,add=TRUE)

estRF.2 <- image.plot(proj$x,proj$y, fields[[2]],main="(b)",xlab="",ylab="")

plot(spatial.polygonc,add=TRUE)

## now extract the spatial estimated response for each variable,

just the inverse logit of the corresponding fixed effect

# (intercept) and the random field/fields (see model above)

# Maps of estimated HIV prevalence (Figure 5.4)

par(mfrow=c(1,2))

estResponse.1 <- image.plot(proj$x,proj$y,binomial(link="logit")$linkinv(

fit$summary.fix[1,1] + fields[[1]]),main="(a)",xlab="",ylab="")

plot(spatial.polygond,add=TRUE)

estResponse.2 <- image.plot(proj$x,proj$y,binomial(link="logit")$linkinv(

fit$summary.fix[2,1] + fields[[2]] + fit$summary.hyperpar[5,1]*fields

[[1]]),main="(b)",xlab="",ylab="")

plot(spatial.polygonc,add=TRUE)
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###7.Fit individual models and plot corresponding random effects

(no covariates in models):

fit.hss <- geo.fit(mesh = mesh, locs = locs.1, response = response.1,

family = "binomial", verbose = TRUE)

fit.dhs <- geo.fit(mesh = mesh, locs = locs.2, response = response.2,

family = "binomial", verbose = TRUE)

par(mfrow=c(1,2))

field.hss <- find.fields(fit.hss, mesh = mesh, spatial.polygon = spatial.polygond,

plot=TRUE)

estRF.1 <- image.plot(proj$x,proj$y,field.hss[[1]],main="(a)",xlab="",ylab="",

axes=FALSE)

plot(spatial.polygond,add=TRUE)

field.dhs <- find.fields(fit.dhs, mesh = mesh, spatial.polygon = spatial.polygonc)

estRF.2 <- image.plot(proj$x,proj$y,field.dhs[[1]],main="(b)",xlab="",ylab="",

axes=FALSE)

plot(spatial.polygonc,add=TRUE)

## ##now extract the spatial estimated response for each variable,

just the inverse logit of the corresponding fixed effect

# (intercept) and the random field/fields (see model above)

#Maps of estimated HIV prevalence (Figure 5.3)

par(mfrow=c(1,2))

estResponse.1 <- image.plot(proj$x,proj$y,binomial(link="logit")$linkinv(

fit.hss$summary.fix[1,1] + field.hss[[1]]),main="(a)",xlab="",ylab="")

plot(spatial.polygond,add=TRUE)

estResponse.2 <- image.plot(proj$x,proj$y,binomial(link="logit")$linkinv(

fit.dhs$summary.fix[1,1] + field.dhs[[1]]),main="(b)",xlab="",ylab="")

plot(spatial.polygonc,add=TRUE)

####8. Fit individual models with covariates

fit.hss <- geo.fit(mesh = mesh, locs = locs.1, response = response.1,
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family = "binomial", covariates = fixed.covariates.1 , nl.cov = nl.cov.1,

verbose = TRUE)

fit.dhs <- geo.fit(mesh = mesh, locs = locs.2, response = response.2,

family = "binomial", covariates = fixed.covariates.2 , nl.cov = nl.cov.2,

verbose = TRUE)

### Plot spatial random effects (Figure 5.7)

field.hss <- find.fields(fit.hss, mesh = mesh, spatial.polygon =

spatial.polygon,plot=TRUE)

field.dhs <- find.fields(fit.dhs, mesh = mesh, spatial.polygon =

spatial.polygon)

proj <- inla.mesh.projector(mesh)

par(mfrow=c(1,2))

estRF.1 <- image.plot(proj$x,proj$y,field.hss[[1]],main="(a)",

xlab="",ylab="",

axes=FALSE)

plot(spatial.polygond,add=TRUE)

estRF.2 <- image.plot(proj$x,proj$y,field.dhs[[1]],main="(b)",

xlab="",ylab="",

axes=FALSE)

plot(spatial.polygon,add=TRUE)

### 9. Plot of non-linear effects (Figure 5.5)

### Load shapefile

shape1 = readShapePoly("G:\\DHS2013 datasets\\districtric_boundaries

\\BDR_health districts")

shape1@data

### Create neighbourhood/adjacency matrix

# neig: neighbourhood structure

176



neig1 <- poly2nb(shape1)

# plot neighbourood

plot(neig1, coordinates(shape1), add=TRUE)

### Set up INLA call

# Convert it into an inla neighbourhood object

neig.inla = nb2INLA("neig1", neig1) # empty variable, file is saved

data1<-read.csv("G:\\DHS2013 datasets\\HSS_2014.csv")

#age as cont rand using random walk+BYM

forma=status~-1+f(AgeDist,model="rw2")+gravida+f(Dis_ID, model="bym",

graph="neig1")

resa1<-inla(forma,data=data1, family="binomial",control.compute=

list(dic=TRUE,cpo=TRUE)

,verbose = TRUE)

x.age1 <- resa1$summary.random$AgeDist$ID #not running

fhat.age1 <- resa1$summary.random$AgeDist$mean

max<-max(fhat.age)

min<-min(fhat.age)

plot(x.age1, fhat.age1, type="l",xlim=c(10,65),ylim=c(-1.6,1)

,main="(a)",xlab="Age in years",ylab="Effect")

lines(x.age1, resa1$summary.random$AgeDist$"0.025quant",lty=2,col="red")

lines(x.age1, resa1$summary.random$AgeDist$"0.975quant",lty=2,col="red")

###load data at constituency level##

shape2 = readShapePoly("G:\\Constituencies_shapefiles

\\Old_Constituency_Boundaries_107.shp")

shape2@data

### Create neighbourhood/adjacency matrix
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# neig: neighbourhood structure

neig2 <- poly2nb(shape2)

# plot neighbourood

plot(shape2, border=gray(.5))

plot(neig2, coordinates(shape2), add=TRUE)

### Set up INLA call

# Convert it into an inla neighbourhood object

neig.inla = nb2INLA("neig2", neig2) # empty variable, file is saved

data2<-read.csv("G:\\DHS2013 datasets\\MEN_WOMEN_HIV_reduced.csv")

data2<-data.frame(data2)

#age a continuous var modelled using a random walk model

forma=HIV03~-1+f(age,model="rw2")+gender+kidsdead1+kidsdead2

+edu1+edu2+edu3+sexhhh+WealthIndexP+WealthIndexM+WealthIndexR+

WealthIndexRt+mstatus1+mstatus2+mstatus3+mstatus4+mstatus5+

agesex1+agesex2 +agesex3+agesex4+sexualactivity1+sexualactivity2

+condomUse

+STI+placeres+f(ID, model="bym", graph="neig2")

resa<-inla(forma,data=data2, family="binomial",control.compute=

list(dic=TRUE,cpo=TRUE))

#Ploting the random effects of age against cont.var:"Age"

x.age <- resa$summary.random$age$ID

fhat.age <- resa$summary.random$age$mean

max<-max(fhat.age)

min<-min(fhat.age)

par(mfrow=c(1,2))

plot(x.age1, fhat.age1, type="l",xlim=c(10,65),ylim=c(-1.6,1)

,main="(a)",xlab="Age in years",ylab="Effect")
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lines(x.age1, resa1$summary.random$AgeDist$"0.025quant",lty=2,col="red")

lines(x.age1, resa1$summary.random$AgeDist$"0.975quant",lty=2,col="red")

plot(x.age, fhat.age, type="l",xlim=c(10,65),ylim=c(-3,1),

main="(b)",xlab="Age in years",ylab="Effect")

lines(x.age, resa$summary.random$age$"0.025quant",lty=2,col="red")

lines(x.age, resa$summary.random$age$"0.975quant",lty=2,col="red")
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