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Abstract 
 

Patients' adherence to a prescribed medication regimen is one of the most significant barriers to 

successful antiretroviral therapy (ART). In addition, adherence to ART is one of the key 

determinants of Human Immunodeficiency Virus (HIV) disease progression, while non-adherence 

severely compromises treatment effectiveness and leads to unsuppressed virus. The extent of the 

impact of poor adherence on resulting health measures is often unknown, and typical analyses 

ignore the time-varying nature of adherence. The main objective of this study was to model time-

varying outcomes of patients, while accounting for data missingness and measurement error using 

dynamic models, with application to a cohort of 154 adult patients initiated on ART between 

January 2015 and December 2017 at the Luderitz hospital. The outcome variable of this study was 

viral load which was measured at scheduled follow-up visits of patients. Baseline CD4 count, 

baseline weight, age at start of ART and gender were the non-dynamic covariates which were 

measured at the ART initiation, while adherence to ART and weight at follow up were the dynamic 

covariates measured at follow up visits. This study used mixed effects model and Generalized 

Estimating Equations (GEE) to model longitudinally measured viral load as a function of the 

dynamic as well as non-dynamic covariates. To account for missingness in the outcome variable 

as well as potential measurement error in covariates, a Simulation Extrapolation Inverse 

Probability Weighted Generalized Estimating Equations (SWGEE) model that incorporates 

missing and measurement error was used to model the data. The study found that adherence was 

good in female patients as compared to male patients. Furthermore, the study found that patients 

with a good adherence rate achieved viral suppression within 12 months of treatment unlike non-

adherent patients.  In conclusion, viral load of patient’s on ART differ across the patients’ baseline 

demographic and clinical characteristics. 
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CHAPTER 1 : INTRODUCTION 
 

1.1 Background of the study 

Human Immunodeficiency Virus (HIV) is the virus that can lead to acquired immunodeficiency 

syndrome (AIDS) if not treated, and it is a lifetime infection since the body is not capable of getting 

rid of it. HIV/AIDS is a global pandemic (Cohen, Hellmann, Levy, DeCock and Lange, 2008). 

Approximately 37.9 million people were infected globally in 2018, of which 1.7 million (4.5%) 

were children less than 15 years, and 57% were men (United Nations Program on HIV and AIDS 

[UNAIDS] (2019, p.16)). UNAIDS (2019) also indicated that there were 1.7 million new 

infections in 2018 and about 770,000 deaths from AIDS worldwide.  

 

Moreover, Sub- Sahara Africa is the region most affected, with an estimated 61% of new HIV 

infections that occurred in the region in 2018 (UNAIDS, 2019). Namibia is one of the countries 

with a high infection rate in the sub-continent. Based on the UNAIDS annual report of 2015, the 

first case of HIV in Namibia was reported in 1986 and since then the prevalence has continued to 

rise and reached a peak of 22% in 2002. In 2016 about 220, 000 (10%) Namibians were living 

with HIV (UNAIDS, 2019). The number of new cases for HIV in Namibia slowly declined with 

only 11,000 new infections reported in 2014, compared to the year 2000 when there were 21,000 

new cases of HIV annually (MohSS, 2016). 

 

There is currently no effective cure that exists, but with proper medical care, HIV can be controlled 

with antiretroviral therapy (ART) if taken the right way every day. Antiretroviral medicine can 
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prolong the lives of people infected with HIV, keep them healthy, and greatly lower their chance 

of infecting others (Centre for Disease Control [CDC], 2019). The Government of Namibia is 

committed to controlling the epidemic (MoHSS, 2016, p.2). According to the Directorate for 

Special Disease of Namibia, in 2016 general ART coverage was estimated at 76%, while paediatric 

coverage was estimated at 95%. 

 

In 2015, UNAIDS developed the 90-90-90 targets to be achieved by 2020, with the aim of ending 

the epidemic by 2030 (UNAIDS, 2017). The Ministry of Health and Social Services (MoHSS) in 

their national guidelines for ART defined the 90-90-90 goals as follows: at least 90% of all people 

living with HIV should know their HIV status, at least 90% of all people diagnosed with HIV 

infection will receive sustained antiretroviral therapy and at least 90% of all people receiving 

antiretroviral therapy will have viral suppression (MoHSS, 2016, p.2). Consequent to these goals, 

viral load monitoring in People Living with HIV (PLHIV) has become a crucial activity in health 

facilities offering ART across the country in order to assess the progress of the last 90 of the 90-

90-90 goal. The Namibia Population-Based HIV Impact Assessment (NAMPHIA) of 2017 

reported that the prevalence of viral load suppression (VLS) among HIV-positive adults aged 15-

64 years on ART in Namibia was 77.4%: 81.7% among females and 69.6% among males 

(NAMPHIA, 2018). This is slightly lower than the target of 90%. The low VLS is mostly attributed 

to poor treatment adherence (Achappa et al. 2013; Kim et al. 2018). 

 

Achappa et al. (2013) defined adherence as a patient's ability to follow a treatment plan, take 

medications at prescribed times and frequencies, and follow restrictions regarding food and other 
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medications. An adherence to ART of 95% is required as an appropriate level to achieve maximal 

viral suppression and lower the rate of opportunistic infections (Kim et al., 2018). Adherence to 

ART is measured through pill counting, that is, at follow-up, if a patient has the correct number of 

(leftover) pills then they are fully adherent otherwise they are not adherent. Adherence is promoted 

by proper ongoing support and counseling as well as prescribing simplified and well-tolerated 

regimens involving as few pills as possible, administered no more than two times per day (MoHSS, 

2016, p.20). 

 

HIV virulence trends are estimated using set point viral load which is the concentration of HIV 

RNA copies in blood and reflects the ongoing virus replication in a person’s body (Herbeck et al., 

2014). Since viral load is a more sensitive and an earlier indicator of treatment failure, Namibia 

has transitioned to routine viral load monitoring rather than the CD4 count for treatment 

monitoring. However, if a patient has virologic failure or shows signs of clinical deterioration, a 

CD4 count should be done (MoHSS, 2016, p.32). Viral load is an excellent means of monitoring 

treatment response because ART prevents HIV replication by inhibiting viral enzymes causing the 

viral load to decline (International Center for AIDS Care and Treatment Programs [ICAP], 2016, 

p.5). One of the challenges in monitoring HIV treatment is the time-varying pattern of health 

outcomes and data missingness and measurement error in key variables.  

 

Statistical models are being used to understand the transmission and progression of infections and 

evaluation of the potential impact of control programs in reducing morbidity and mortality (Turner, 

2011). Both static and dynamic models have been used for monitoring health outcomes. Static 

modeling is an approach to modeling of a problem based on the state at a fixed point in time 
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whereas dynamic models are general models that contain or depend upon an element of time, 

especially allowing for interactions between variables, and are used to express and model the 

behavior of the system over time (Daly et al, 2008). Furthermore, static and individual based 

models excel at projecting clinical events over the lifetime of unique patients who retain their 

clinical trajectory history whereas dynamic and population-based models are most often used to 

model transmission and to project population-level changes in incidence and prevalence over long 

horizons (Jacobsen & Walesnsky, 2016).  

 

Dynamic models are categorized into linear and nonlinear/non-normal models. Dynamic linear 

models (DLM) are parametric in that the parameter variation and available information are 

described probabilistically. They can be seen as a generalization of the regression models allowing 

for changes in parameters values throughout time (Migon et al., 2005). Campos, Glickman & 

Hunters (2018) developed a modeling framework for longitudinally recorded health measures 

which was modeled as a function of time-varying adherence to medication or other time-varying 

covariates and relied on normal Bayesian dynamic linear models (BDLMs), accounts for time-

varying covariates and non-dynamic covariates. Their model can be used to forecast health 

outcomes as a function of specified patterns of adherence and provides a robust framework for 

understanding the impacts of poor medication adherence. 

 

With the growing use of longitudinal data in medical health and social science researches, methods 

of analysis of such data need to be more clearly understood. As one would expect, such datasets 

are characterized by the fact that repeated observations for subject are correlated. For this reason, 

this study also touched on the issues of model estimation and model selection for longitudinal data 
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with time-varying covariates. In addition, missingness in longitudinal data sets may give wrong 

inferences if not properly accounted for. Therefore, correct statistical analysis of such data requires 

the modelling of correlation and accounting for the missingness and covariate measurement error. 

 

1.2 Statement of the problem 

HIV is a lifetime infection that is currently only controlled through ART, and Namibia has one of 

highest HIV prevalence in the world.  A great commitment to ART is required to help suppress 

the virus in the body, reduce transmission and boost the immune system. The change in viral load 

over time is a good indicator of treatment effectiveness, while HIV-load decrease and suppression 

over time for patients on ART are associated with consistent adherence to ART (Chendi et al., 

2019). Adherence changes over time but typical analyses of health outcomes ignore the time-

varying nature of adherence to medication and instead examine the relationship between adherence 

and outcomes via correlations with non-dynamic adherence measures (Campos et al., 2018).  

Therefore, there is need for analyzing time-varying treatment adherence in association with time-

varying outcomes. An analysis of HIV viral load dynamics becomes very important as it provides 

additional information regarding the prognosis of the disease. Furthermore, viral load in HIV 

infected persons are measured with errors due to disease progressions, illnesses, and lifestyle 

factors. Failure to appropriately account for the extent of missingness and measurement errors may 

lead to biased results. Therefore, there is a need to consider models that allows for the analysis of 

viral load with missingness and measurement error. 
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1.3 Objectives of the study 

1.3.1 Main objective 

The main objective of this study was to model time-varying outcomes of patients, while accounting 

for data missingness and measurement error using dynamic models, with application to ART data 

obtained from the Luderitz hospital in Namibia. 

  

1.3.2 Specific objectives 

a) To explore the average change of HIV viral load in patients on ART over time 

b) To model the change in viral load over time using Mixed effects models and Generalized 

estimating equations. 

c) To investigate the effects of clinical factors and demographic characteristics on viral load. 

d) To model viral load longitudinal data adjusting for the bias induced by measurement error 

in covariates as well as missingness in response variable. 

 

1.4 Significance of the study 

According to the Namibia Factsheet by Centre for Disease Control (CDC) of 2017, Namibia has 

one of the world’s highest HIV prevalence rates of 13.8% and HIV is still classified and treated as 

a special disease. The findings of this study could assist health care workers (HCWs) in developing 

innovative approaches to ensure full adherence throughout ART. It could also encourage patients 

to remain fully adherent to their treatment and HCWs to maintain adherence counseling for the 

success of ART which is viral suppression, zero transmission and zero new infections. Moreover, 

the findings of this study could help program planners, decision makers and project implementers 

in fighting the virus and in achieving the 90-90-90 goals. 
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1.5 Organization of the thesis 

The rest of this mini-thesis is organized as follows: Chapter 2 provides the review of dynamic 

models of HIV, while chapter 3 comprises of the study design and exploratory data analysis. In 

chapter 4 data was modeled using Generalized estimating equations (GEE) and Mixed effects 

models (MEM) methods. Chapter 5 extends the models to incorporate responses with missingness 

and covariate with measurement error. Chapter 6 presents the discussion and conclusion. 
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CHAPTER 2 : LITERATURE REVIEW 
 

2.1.  Review of HIV Models 

2.1.1. The Dynamic Models of HIV 

Interest in HIV studies have increased in recent literature with great attention drawn from AIDS 

epidemiology and clinical trials. According to Wu (2005), even though the important findings from 

HIV dynamic studies have been well presented in modern journals, statistical methods for 

estimating viral load dynamic parameters have not been well discussed by researchers in this area. 

Clinicians usually attempt to understand the HIV dynamics by making use of AIDS clinical trials. 

These clinical trials have considerably improved the knowledge of the pathogenesis of HIV 

infection and guided for the treatment of HIV patients and evaluation of antiretroviral (ARV) 

therapies (Huang, Liu, & Wu, 2006). 

 

The analyses of HIV dynamics are often made using models derived through a system of 

differential equations (ODE) in which interaction of CD4 cells and virus is described. However, 

statistical inferences based on such models present computational difficulties due to problems with 

ODE numerical solutions and statistical algorithms. Dynamic linear and non-linear mixed effects 

(LME/NLME) models are popular in modeling HIV dynamics (rate of changes in viral load) as 

both include confounding interaction of adherence, time varying, invariant covariates as well as 

random effects (Yangxin et al., 2014). 

 

2.1.2. Dynamic models with time varying covariates 
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Since patients’ characteristics are often recorded repeatedly over a given period of treatment 

routine, the measurements collected from the same subject for that period may be correlated while 

measurements collected from different patients can be assumed to be independent. One of the 

powerful tools used to model   HIV dynamics is linear mixed effects (LME) model introduced by 

(Laird & Ware, 1982). In this model, time varying covariates as well as both within-subject and 

between-subject dependency are considered. 

 

Time-varying covariance occurs when a given covariate changes over time during the follow-up 

period, which is a common phenomenon in clinical trials (Zhang et al., 2018). According to Huang 

et al. (2003), in most models for HIV dynamic, the treatment effect is assumed to be constant. 

However, the effect of treatment appears to change over time, probably due to pharmacokinetic 

variation, fluctuating adherence, the emergence of drug resistant mutations and/or other factors. 

To better model the actual antiviral responses, they extended previous work to include time varying 

covariates. They also developed a viral dynamic model to evaluate antiviral response as a function 

of time-varying concentrations of drug in plasma, and changes over time in phenotypic sensitivity 

of the virus. Some authors such as Ho et al. (1995); Polis et al. (2001) and Wei et al. (1995) have 

used a linear mixed-effects model to fit viral dynamic data from the first several days. 

 

Yangxin et al. (2014) analyzed AIDS longitudinal data using nonlinear mixed-effects (NLME) 

models for HIV dynamics. The results suggest that modeling HIV dynamics and virologic 

responses with consideration of covariate measurement error and time-varying clinical factors may 

be important for HIV/AIDS studies in providing quantitative guidance to better understand the 

virologic responses to antiretroviral treatment and to help evaluation of clinical trial design in 
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existing therapies.  More recent comprehensive review on NLME models can be found in Huang, 

Wu, Holden-Wiltse & Acosta (2011); Gagne & Huang (2012); Bryan & Heagety (2014). 

 

A study by Huang et al. (2011) investigated the effects of several summary determinants of 

Medication Event Monitoring System (MEMS) adherence rates on virologic response measured 

repeatedly over time in HIV-infected patients. They established a mechanism-based differential 

equation model with consideration of adherence to medication, interacted by virus susceptibility 

to drug and baseline characteristics, to characterize the long-term virologic responses after 

initiation of therapy. They found that the baseline viral load had a positive effect on drug efficacy, 

while the baseline CD4 cell count had a negative effect on it. 

 

2.2 Model definitions 

 

2.2.1 Linear Mixed Effects Model 

Linear mixed effects models have become very popular tools for analysis of longitudinal data 

because they are very flexible and applicable (Van et al., 2010). These models are developed with 

the idea that individuals in the population have their own mean response profile and subject 

specific effects over time. According to Laird and Ware (1982),  Molenberghs and Verbeke (2001), 

the longitudinal measurements are fit by using a regression model that allows parameters to vary 

among subjects. To present linear mixed effects model, let the 𝑗𝑡ℎ observed longitudinal outcome 

𝑦𝑖𝑗 of object 𝑖 (𝑖 = 1, … , 𝑛𝑖) measured at time 𝑡𝑖𝑗 satisfies 𝑏̃𝑖0 + 𝑏̃𝑖1𝑡𝑖𝑗 + 𝜖𝑖𝑗.  
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One can redefine 𝑦𝑖𝑗 by taking 𝑏̃𝑖 = (𝑏̃𝑖0, 𝑏̃𝑖1)
′
  as a vector of subject specific parameters to be 

bivariate normal with mean (𝛽0, 𝛽1)′ and 𝑝 × 𝑝 variance covariance matrix 𝐷 and also 𝜖𝑖𝑗 assumed 

to be normal distributed with mean zero and variance 𝜎𝜖
2. Hence, the linear model is given by 

 𝑦𝑖𝑗 = (𝛽0 + 𝑏𝑖0) + (𝛽1 + 𝑏𝑖1)𝑡𝑖𝑗 + 𝜖𝑖𝑗,                       (2.1) 

with 𝑏̃𝑖0 = (𝛽0 + 𝑏𝑖0), 𝑏̃𝑖1 = (𝛽1 + 𝑏𝑖1) and 𝑏𝑖 = (𝑏𝑖0, 𝑏𝑖1)′  taken as random effects with mean 

zero. Equation (2.1) can be treated as a special case of general mixed effects model which assumes 

that the outcome vector 𝑦𝑖 of all 𝑛𝑖 observations for subject 𝑖 satisfies  

 𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝑧𝑖

′𝑏𝑖 + 𝜖𝑖,                                                     (2.2) 

where 𝑥𝑖  and 𝑧𝑖  are (𝑛𝑖 × 𝑝) and (𝑛𝑖 × 𝑞) design matrices of known covariates corresponding to 

the fixed and random effects respectively. 

 

Furthermore, 𝛽  is a 𝑝 × 1 column vector of the fixed-effects regression coefficients 𝛽𝑠 and 𝑏𝑖 

represents the random effects coefficients assumed to be normally distributed with mean zero and 

2 × 2 covariance matrix  𝐷. Moreover, the 𝑛𝑖 ×  1  column vector of the residual components 𝜖𝑖 

are assumed to be independent such that 𝜖𝑖 = 𝑁(0, 𝑅), where 𝑅~𝜎𝑖
2𝐼𝑛𝑖

 with 𝐼𝑛𝑖
 represents the 𝑛𝑖 

dimensional identity matrix. This implies that observations taken from subject 𝑖 are said to be 

independent conditional on the subject specific random effects (Van et al., 2010). 

 

2.2.2 Generalized Linear Models (GLMs) 

The term Generalized Linear Model (GLM) refers to a larger class of models popularized by 

(McCullagh & Nelder, 1989). In these models, three components are specified, that is the random 

component which refers to the probability distribution of response variable 𝑌 which is assumed to 
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follow an exponential family of distributions, the systematic component which specifies 

explanatory variables (predictors) in the model and the link function which describes how the mean 

of the response and linear combination of the predictors are related. The exponential family takes 

the general form: 

𝑓(𝑦|𝜃, 𝜙) = 𝑒𝑥𝑝 [
𝑦𝜃−𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)],                    (2.3) 

where 𝜃 called the canonical parameters and denotes the location, while the 𝜙 called the dispersion 

parameter and denotes the scales (McCullagh & Nelder, 1989).  

According to Faraway (2014), the most used canonical links for GLMs are presented in Table 2.1.  

For example, the normal density has an identity link, with unit variance, whereas the Poisson has 

a log-link, and binomial has a logit link. The corresponding variances are provided in the Table. 

Table 2.1: Canonical links for GLMs 

Family Link Variance 

Normal 𝜑 = 𝜇 1 

Poisson 𝜑 = log 𝜇 𝜇 

Binomial 𝜑 = log (
𝜇

1 − 𝜇
) 

𝜇(1 − 𝜇) 

Gamma 𝜑 = 𝜇−1 𝜇2 

Inverse Gaussian 𝜑 = 𝜇−2 𝜇3 

   

 

 

2.2.3 Generalized Linear Mixed Effects Model (GLMM) 

Generalized linear mixed models (GLMMs) are defined as extensions of linear mixed effect 

models and generalized linear models to accommodate non-continuous responses such as binary 

responses or counts (Hedeker, D. (2005). GLMMs are also considered for both fixed and random 

effects which make them appropriate models to apply to longitudinal data where repeated 
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observations from the same subject are nested within subjects (Bolker et al, 2009 and Gad & El 

Kholy, 2012.). Nested observations are repeated measurements for individuals which are 

organized at more than one level. On the other hand, GLMs consider only the fixed effects models 

(McCulloch, & Neuhaus, 2014).  

 

According to Ojo et al. (2017), fixed effects models assume that all observations are independent 

of each other which makes them to be inappropriate models for analysis of correlated data 

structures such as clustered or multilevel data where observations are nested within groups. Let 

𝑦𝑖, … , 𝑦𝑛𝑖
 be independent continuous random vectors for 𝑛𝑖 subjects, where   𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖

) 

denotes an observed response vector for subject  𝑖. For a given subject 𝑖 at 𝑗𝑡ℎ observation, the 

GLMM (Breslow and Clayton, 1993) is given by 

𝜑 (𝐸(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑧𝑖𝑗 , 𝑏𝑖)) = 𝑥𝑖𝑗
′ 𝛽 + 𝑧𝑖𝑗

′ 𝑏𝑖 ,                                    (2.4) 

where 𝜑 denotes the link function  linking the conditional mean response (𝐸(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑥𝑖𝑗 , 𝑏𝑖)) with 

linear mixed model 𝜇𝑖 = 𝑥𝑖𝑗
′ 𝛽 + 𝑧𝑖𝑗

′ 𝑏𝑖, for which the known covariates 𝑥𝑖𝑗 and   𝑧𝑖𝑗 represent the 

design matrices of dimension 𝑛𝑖 × 𝑝 and  𝑛𝑖 × 𝑞 corresponding to the vector  𝛽 = (𝛽1, … , 𝛽𝑝)
′
 of 

regression coefficients (the fixed effects) and  𝑏𝑖 = (𝑏𝑖1, … , 𝑏𝑖𝑞)
′
(random effects) respectively.  

 

2.2.4. Generalized additive models 

Generalized additive models (GAMs) are statistical models that can be used to estimate trends as 

smooth functions of time. GAMs use automatic smoothness selection methods to objectively 

determine the complexity of the fitted trend (Simpson, 2018). According to Yang et.al (2012), 
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Generalized Additive Model (GAM) provides a flexible and effective technique for modelling 

nonlinear time-series in studies of the health effects of environmental factors. However, GAM 

assumes that errors are mutually independent, while time series can be correlated in adjacent time 

points (Yang et al., 2012). When the outcome in a GAM is subject to missing, practical analyses 

often assume that missingness is missing at random (MAR) however, this assumption can be of 

suspicion when the missingness is by design (Xie, 2010). In parametric regression, the researcher 

must choose a functional form to impose on the data, for example, that trend over time is linear. 

However, GAMs reverse this process by letting the data inform the choice of functional form 

(Sullivan, Shadish & Steiner, 2015). Sullivan et al. 2015, suggested that GAMs may be very useful 

both as a form of sensitivity analysis for checking the plausibility of assumptions about trend and 

as a primary data analysis strategy for testing treatment effects. 

 

2.2.5. Semiparametric Models 

Semi-parametric models involve a partly specified regression function in some primary covariates 

and a non-parametric function in some other secondary covariates (Sutradhar, 2018). These models 

in a longitudinal setup has recently been discussed extensively both for repeated Poisson and 

negative binomial count data (Sutradhar, 2018). However, the inferences for semi-parametric 

Poisson and negative binomial models cannot be applied to longitudinal binary responses through 

a binary dynamic logit model, as these models unlike the count data models produce recursive 

means and variances containing the dynamic dependence or correlation parameters.  In such case, 

Sutradhar (2018), considered general multinomial dynamic logit model in a semi-parametric setup 

can be employed to analyze nominal categorical data in a semi-parametric longitudinal setup. The 

model was then modified to analyze ordinal categorical data. The ordinal responses are fitted by 
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using a cumulative semi-parametric multinomial dynamic logit model. Fan, Huang, & Li. (2007), 

proposed a class of semi-parametric models for covariance function of longitudinal data and the 

estimation procedures for model for model coefficients using a profile weighted least squares 

approach. 

 

2.3. Estimation approaches 

Frequentist and Bayesian approaches are the two major estimation methods used in studies of HIV 

dynamics. In the frequentist approach, the maximum likelihood estimation (MLE) methods have 

been widely used for estimating HIV dynamic model parameters. However, due to complexity of 

such models, MLE method is computationally intensive compared to Bayesian approach (Chen, 

2012). 

 

Different extensions based MLE estimation in NLME models, likelihood approximations such as 

linearization (Pinheiro and Bates, 1995) or Laplace approximation (Wolfinger, 1993) have been 

proposed, leading to inconsistent estimates (Ding & Wu, 2001). Guedj et al. (2007) proposed 

algorithms based on Gaussian quadrature but these algorithms are cumbersome and were not 

applied to problems with more than three random effects. Wu and Zhang (2002) proposed a semi-

parametric approach. Other new algorithms are stochastic EM algorithms as Monte Carlo EM (Wu, 

2004). Commenges et al. (2011) proposed an asymptotic distribution of the maximum h-likelihood 

estimators (MHLE).  

 

Another complexity of viral load analysis is left censoring which occurs when viral load is below 

a limit of quantification (LOQ). The proportion of subjects with viral load below LOQ has 
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increased with the development of highly active anti-retroviral treatment (HAART). Although it is 

known that when ignored, this censoring may induce biased parameter estimates (Samson et al., 

2006), several authors did not consider this problem (Ding and Wu, 2001; Wu et al., 2005). 

Conversely, Hughes (1999); Fitzgerald et al. (2002); Thiebaut et al. (2005); Guedj et al. (2007) 

proposed different approaches to handle accurately the censored viral load data. Samson et al. 

(2006) extended the SAEM algorithm to perform maximum likelihood estimation for left-censored 

data. 

 

The Bayesian approach is an efficient way to incorporate prior information, both point estimates 

and uncertainties (variances), into analysis to identify more unknown parameters in complex 

models (Yuan & MacKinnon, 2009).  Bayesian estimation methods based on Markov Chain Monte 

Carlo (MCMC) algorithms and informative priors have first been proposed for complex ODE HIV 

dynamic models and NLME methods (Putter et al., 2002; Wu et al., 2005; Huang et al., 2006). 

Yangxin et al. (2014) used a Bayesian NLME joint modeling approach to estimate parameters of 

viral dynamic models with skew-t distribution in the presence of covariate measurement error. In 

this model, viral load response, time-varying CD4 covariate with measurement error, and time-

dependent drug efficacy a function of multiple treatment factors was fully integrated into the data 

analysis. 

 

2.4.  Model Selection Approaches 

Model selection is the task of selecting a statistical model from a model class, given a set of data 

(Ding, Tarokh & Yang, 2018). The primary objective of model comparison is to choose the 

simplest model that provides the best fit to the data. In case of missing data, the naive use of only 
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complete cases can lead to serious deficiencies in its applicability to measure the distance between 

models. Modeling complete data 𝐷𝑜𝑏𝑠 = (𝑌𝑖𝑗 , 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑛𝑖) is often preferred but there 

is a case 𝒀𝑖 = (𝑌𝑜𝑏𝑠,𝑖𝑗 , 𝑌𝑚𝑖𝑠,𝑖𝑗) which is totally a different modeling strategy (Duncan & Duncan, 

1994). 

 

2.4.1 Akaike's information criterion (AIC)  

Akaike's information criterion (AIC) is a measure of goodness of fit of an estimated statistical 

model. It is not a test on the model in the sense of hypothesis testing; rather it is a tool for model 

selection. The AIC penalizes the likelihood by the number of covariance parameters in the model. 

Akaike (1974) proposed the information criterion 

 𝐴𝐼𝐶 = −2 log(ℒ(𝜽)) + 2𝑝, (2.5) 

for model selection, where, ℒ(𝜽̂) = ∫ ∏ ∏ 𝑓𝑦(𝒀𝒊; 𝜽)𝑑𝑌𝑚𝑖𝑠,𝑖𝑗
𝑛𝑖
𝑗=1

𝑛
𝑖=1  is the maximized value 

likelihood function for the estimated model and 𝑝 is the number of parameters in the model. In 

other words, the first term measures the goodness of fit, whereas the second term is interpreted as 

a penalty for model complexity. The AIC values for candidate models are computed, and then the 

model that minimizes AIC is selected indicating the less information a model loses, the higher the 

quality of that model. Therefore, information criterion estimates the expected discrepancy between 

the unknown true distribution of 𝒚, which is denoted as  𝑞𝑦, and the estimated distribution  𝑓𝑦(𝜽̂𝑦). 

This discrepancy is measured by the incomplete-data Kullback-Leibler divergence. 

 

2.4.2 Bayesian information criterion (BIC) 



 

18 
 

The Bayesian information criterion (BIC) takes the form of a penalized log-likelihood function 

where the penalty is equal to the logarithm of the sample size times the number of estimated 

parameters in the model. Claeskens and Hjort (2008), gave a general form of BIC as  

𝐵𝐼𝐶(Μ) = 2 log ℒ(Μ) − (log 𝑛)𝑝,                   (2.6) 

where ℒ(Μ) is the maximized value of the likelihood function of model Μ, 𝑝 is the number of 

parameters in the model Μ. The model with the largest BIC value will be chosen as the best model. 

 

2.4.3 Quasi-information criterion (QIC) 

Although the AIC can be used in association with mixed models, it cannot be used with GEEs to 

select either the optimal set of explanatory variables or correlation matrix, because GEE estimation 

is based on the quasi-likelihood rather than the maximum likelihood (Barnett et al., 2010). The 

quasi-likelihood counterpart to the AIC is the QIC, or the “quasi-likelihood under the 

independence model information criterion” (Pan, 2001). Based on the Kullback–Leibler 

information defined for the quasi-likelihood under the working independence model, Pan (2001) 

derived the QIC statistic for a GEE model with given working correlation: 

𝑄𝐼𝐶 = 2 ∑ ∑ 𝑄(𝛽̂, 𝜙̂; 𝑌𝑜𝑏𝑠;𝑖𝑗, 𝑌𝑚𝑖𝑠;𝑖𝑗 , 𝑋𝑖𝑗) + 2𝑇𝑟(Φ̂𝐼
−1𝑊̂),

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 

 

(2.7) 

 

where 𝑄(𝛽̂, 𝜙̂; 𝑌𝑜𝑏𝑠;𝑖𝑗, 𝑌𝑚𝑖𝑠;𝑖𝑗, 𝑋𝑖𝑗) is the log-quasi likelihood under independent model with the 

substitution of  𝛽̂ 𝑎𝑛𝑑 𝜙̂, 𝑇𝑟(𝐴) denotes the trace of matrix 𝐴, and Φ̂𝐼 = (∑ 𝐷𝑖
𝑡𝐴𝑖

−1𝐷𝑖
𝑛
𝑖=1 )−1 with 

the substitution of  𝛽̂ 𝑎𝑛𝑑 𝜙̂. A better model is the one with a smaller QIC.  
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2.4.4 Missing Longitudinal Information Criterion (MLIC) 

Shen and Chen (2012) proposed the Missing Longitudinal Information Criterion (MLIC) based on 

the expected quadratic loss. Suppose 𝝁𝑖
0 = 𝐸(𝒀𝑖|𝑋𝑖) is the true mean of 𝒀𝑖 and 𝜇̂𝑖𝑗 is the estimated 

mean of 𝑌𝑖𝑗 based on a candidate model. The MLIC statistic for a GEE model with given working 

correlation is written as  

𝑀𝐿𝐼𝐶 = ∑ ∑(𝑌𝑖𝑗 − 𝜇̂𝑖𝑗)
2

+ 2𝑇𝑟(Φ̂ℑ̂)

𝑛𝑖

𝑗=1

𝑛

𝑖=1

, 
 

(2.8) 

where ℑ̂ = ∑ 𝐷𝑖
𝑡𝑉𝑖

−1(𝒀𝑖 − 𝝁𝑖
0)(𝒀𝑖 − 𝝁𝑖

0)𝑡𝐷𝑖|𝛽=𝛽̂,𝜙=𝜙̂
𝑛
𝑖=1 . In practice, 𝝁𝑖

0 is unknown and 

estimated by the largest candidate model (Shen & Chen, 2012). Similarly, a model with smaller 

MLIC value represents a better model. The MLIC has also modified to accommodate 

monotonically missing response data by applying the WGEE estimation (Shen & Chen, 2012). 

 

2.5.  Missing Data 

Missing data are a common feature in many areas of research especially those involving survey 

data in biological, health and social sciences (Chinomona & Mwambi, 2015). Even in well-

controlled situations, missing data invariably occur in longitudinal studies (Hedeker & Gibbons, 

1997). Subjects can be missed at a measurement wave; these subjects provide data at some but not 

all study timepoints. Alternatively, subjects who are assessed at a given study timepoint might 

only provide responses to a subset of the study variables, again resulting in incomplete data. 

Finally, subjects might drop out of the study or be lost to follow-up, thus providing no data beyond 

a specific point in time (Hedeker & Gibbons, 1997).  

 

2.5.1 Mechanisms of missing data 
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a) Missing Completely at Random (MCAR) 

The most basic assumption about the missing data is to assume that they were missing completely 

at random. That is, a subject is missing at a timepoint for completely random reasons. This implies 

that the missing data indicators do not depend on the dependent variable values that were observed 

or those that were not observed (Xu & Blozis, 2011). 

 

b) Missing at Random (MAR) 

The MAR mechanism occurs when the probability of missing data in a variable is related to some 

other variable(s) in the data set that is, missing at random after controlling for all other related 

variables (Graham, 2009). An example of MAR is when subjects drop out of the study because 

their value of the dependent variable falls below (or exceeds) some critical value. For instance, if 

subjects in a depression study who have Hamilton depression scores below 15 drop out of the study 

(i.e.., they are measured at a timepoint with a score below 15, but then are not measured at any 

future time points). 

 

c) Missing Not at Random (MNAR) 

Missing not at random (MNAR) is the situation where the missingness is related to the unobserved 

dependent variable vector, after taking observed variables into account. The notion here is that 

there is a relationship between what would have been observed and the missingness. MNAR can 

occur if subjects are not measured at a given timepoint because their value of the dependent 

variable falls below (or exceeds) some critical value. For instance, to contrast MNAR with MAR, 

MNAR occurs if subjects who have Hamilton depression scores below 15 are not measured at that 

timepoint. 
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2.5.2. Handling missing data 

There are three categories of methods for handling missing data are: case deletion, imputation, and 

augmentation (McKnight, McKnight, Sidani & Figueredo, 2007). Data deletion is an efficient way 

of dealing with missing data if missing data are MCAR. Researchers delete cases containing 

missing values and run a model without missing values. However, as the fraction of missing cases 

grows, problems such as reduction in statistical power and potential bias will arise. Graham (2009) 

recommended that, if at least 5% of the cases are missing, one should use multiple imputation or 

data augmentation. 

 

Barnard & Meng (1999) proposed multiple imputation which has solved the problem of biased 

uncertainty, it has become the most practical and the best-recommended method in most cases. 

Among imputation techniques that can generate unbiased parameter estimates under the MAR 

assumption, most relevant and useful methods are expectation maximization (EM) algorithms and 

Markov chain Monte Carlo (MCMC) procedures. Missing data may seriously compromise 

inferences from randomised clinical trials, especially if missingness is not at random and if missing 

data are not handled appropriately (Sterne et al., 2009). 
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CHAPTER 3 : STUDY DESIGN & EXPLORATORY DATA 

ANALYSIS 
 

3.1. Introduction  

The standard approach for monitoring treatment outcomes in patients on ART depends on the 

measurement of HIV-load over time (Chendi, 2019).  As viral load is a more sensitive and an 

earlier indicator of treatment failure, Namibia has transitioned to routine viral load monitoring 

rather than CD4 count for treatment monitoring (MoHSS, 2014). According to the fifth edition of 

Namibia National ART guidelines of 2016, all patients initiating therapy routinely have a viral 

load (VL) assay done at 6 and 12 months after beginning therapy and every 12 months thereafter 

(but every 6 months for children/adolescents ≤19 years). VL assays are also recommended for 

patients already on treatment who are showing evidence of immunologic and or clinical failure. 

Virological failure is defined as a viral load >1,000 copies/ml 6 months after starting ART or viral 

rebound to >1,000 copies/ml on two consecutive measurements after a period of viral suppression 

(Johnston et al, 2012). Viral suppression means that a person’s viral load has reduced to an 

undetectable level (<40 copies/ml). 

 

ARV medication adherence is vital for the success of ART. Very high levels of adherence and 

taking at least 95% of prescribed doses are required to achieve sustained suppression of HIV 

replication over time. Adherence is promoted through proper ongoing support and counseling. 

Adherence is also promoted by prescribing simplified, well-tolerated regimens involving as few 

pills as possible, administered no more than two times per day. This chapter aimed to obtain an in-

depth understanding of the effect of ART on viral load and examine the average rate of change in 

viral load in patients over time.  
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3.2. Study Design and Setting 

3.2.1. Study design 

This study followed a retrospective cohort study design, with data of records of PLHIV on ART 

obtained from the Luderitz Hospital in the !Karas region of Namibia. This study determined the 

average change in viral load and assessed adherence in all HIV adult patients (patients above the 

age of 19 years) initiated on ART starting from January 2015 to December 2017 and have been on 

ART for at least 12 months at the hospital.  

 

3.2.2. Study Setting 

 

Luderitz hospital is situated in a small town of Luderitz in the southern region of Namibia and it 

is the only state facility that offers ART in the town. The catchment population of the town is 

approximately 14 000. The first patient enrolled on ART care was enrolled in October 2003 and 

the first ART initiation was in the same month. As of December 2019, 3473 patients have been 

enrolled on care while 2624 have been initiated on ART at this facility between October 2003 and 

December 2019. A total of 151 (5.8%) patients initiated on ART have since been recorded dead, 

while 222 (8.4%) were lost to follow-up, 1101 (42%) transferred out to other facilities and 1150 

(43.8%) were active on care.  

 

Systematic reviews (Fox & Rosen, 2010) show that retention rates are estimated to range from as 

low as 64% to as high as 94% at 12 months after ART initiation. Thus, one can say that the 

retention rate at this facility is quite good. Patients on ART are screening for TB at each follow up 

and get tested for TB if screened positive. 485 (13.9%) patients enrolled on care have been on TB 
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treatment and 2524(72.7%) have received TB preventative therapy (TPT). Currently there are 

1,428 (884 females) patients active on ART at Luderitz Hospital, of which 68 (4.8%) are 19 years 

and younger, and 149(10.4%) are 50 years and older. The proportion of patients who are virally 

suppressed (VL<100 copies) stands at 91% as of December 2019, which implies that there is good 

patient management at the facility. 

 

This study used patients who were initiated on ART between January 2015 and December 2017, 

this was because viral load monitoring for patients has started in 2015 and the study aimed at 

working with patients who has at least two viral loads measured. Only adult patients were chosen 

for this study since viral load monitoring differs between adults and pediatric patients.  

 

3.2.3. Study variables 

The outcome variable of this study was viral load, which is the number of virus copies measured 

at 6 months, 12 months and yearly after initiation of ART. The independent variables were: Age 

at start of ART, baseline weight, gender, WHO Clinical stage, time (in months) on ART, baseline 

CD4 Count, adherence, and weight at follow up. Table 3.1 presents details of the study variables. 
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Table 3.1: Variable description of ART data taken from Luderitz Hospital from 2015 –2017 

   

Variable Description Coding 

Age Age of patients at the start of ART in 

years 

 

 

None 

Baseline 

Weight 

Weight of patients at the start of ART in 

kg 

None 

Gender Gender of patients Female=1, Male = 2 

   

Baseline_CD4 

Count 

Number of cells per cubic millimeter 

measured at the beginning of ART 

 

None 

WHO Clinical 

stage 

WHO clinical stage at start of ART 

Stage I = Asymptomatic 

Stage II = Moderate unexplained weight 

loss 

Stage III = Unexplained severe weight 

loss (>10% of presumed or measured 

body weight) 

Stage IV= HIV wasting syndrome 

Stage I = 1, Stage II = 2, Stage III = 

3, Stage IV = 4 

   

Time in months Observation time of viral load (the first 

6th month of ART, month 12 and yearly 

thereafter) 

None 

   

Viral Load 

 

 

 

 

Adherence 

 

 

 

 

 

 

 

 

Weight at 

follow up 

Number of viral particles found in each 

milliliter of blood measured for 

individuals in the first 6th month, month 

12 and yearly thereafter 

 

Adherence of patients to ART measured 

with pill count at follow up. 

Good=when a patient misses at most 3 

doses per month 

Fair =when a patient misses between 4 

and 8 doses per month 

Poor= missing more than eight doses per 

month 
 

Weight of individuals at follow up visits 

 

None 

 

 

 

 

1=Good 

2=Fair 

3=Poor 

 

 

 

 

 

None 
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3.2.4.  Ethical Clearance 

 

This study was approved by the Research Ethical Committee of the University of Namibia from The 

Centre of Postgraduate Studies. Permission to use the ART data was granted by the Luderitz 

Hospital management and patients’ confidentiality was ensured by de-linking extracted data from 

identifiable information.  

 

3.3. Descriptive Statistics 

A total of 154 HIV positive patients initiated on ART between January 2015 and December 2017 

were included in this study. The baseline characteristics of patients are displayed in Table 3.2. 

Among these patients, 110 (71.4%) were females and 44 (28.6%) were males. About 99 (64.3%) 

patients were in WHO stage I, 25 (16.2%) were in stage II, 27 (17.5%) were in stage III and 3 

(1.9%) were in stage IV. The stages descriptions are given in Table 3.1. A total of 46 (29.9%) 

patients were between the ages of 20-29 years, 53 (34.4%) were between 30-39 years, 45 (29.2%) 

were 40-49 years of ages and 10 (6.5%) patients were 50 years and above at the time of ART 

initiation. A total of 53 (34.4%) had a CD4 count below 200cells/mm, 101 (65.6%) had a CD4 

count of 200cells/mm3 and more at the initiation of ART, while 56 (36.4%) had no initial CD4 

count taken.  

 

A total of 133 (86.4%) patients achieved viral suppression (<1000copies/mm3) at the 12 months 

of ART, out of which 98 (73.7%) patients were females, 48 (36.1%) were aged between 30 and 39 

years, 85 (63.9%) were at clinical stage 1 at ART initiation, 61 (45.9%) patients had baseline 

weight between 50 and 70 kilograms, 89 (66.9%) had CD4 counts ≥ 200 cells/mm3 at ART 

initiation.  
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A Chi-square test was used to test for association between the outcome variable (viral load) and 

the independent variables. The results show that gender and WHO stage had p-values (0.046<0.05) 

and (0.041<0.05) thus it was concluded that there was a significant relationship between gender 

and viral load as well WHO stage and viral load. 

 

Table 3.2: Demographic and clinical characteristics by viral suppression at 12 months 

   Viral suppression at 12 months  

Variables 

 Yes No   

Count 

(n=154) 
% 

Count 

(n=154) 
% 

Count 

(n=154) 
% 

   𝝌𝟐 P-

values 

GENDER         

Male 44 28.6 35 79.5 99 

 

20.5 

 

 

 

3.980 

 

 

0.046 

Female 110 71.4 98 89.1 12 10.9 

AGE 

 
      

  

 

 

20-29 years 

 

 

46 

 

 

29.9 

 

 

40 

 

 

86.9 

 

 

6 

 

 

13.1 

 

 

 

 

 

1.808 

 

 

 

 

 

0.613 

30-39 years 53 34.4 48 90.6 5 9.4 

40-49 years 45 29.2 37 82.2 8 17.8 

≥ 50 years 10 6.5 8 80 2 20 

 

 

WHO stage  

      
  

Stage-I 99 64.3 85 85.9 14 14.1  

 

 

8.297 

 

 

 

0.041 

Stage-II 25 16.2 21 84 4 16 

Stage-III 27 17.5 26 96.3 1 3.7 

Stage-IV 3 1.9 1 33.3 2 66.6 

         

CD4 at ART 

initiation 
      

  

<  200 53 34.4 44 83 9 17  

0.314 

 

0.842 
≥  200 101 65.6 89 88.1 12 11.9 

         

Baseline Weight         

< 50kg 26 16.9 20 76.9 6 23.1  

 

 

 
50-70kg 76 49.4 61 80.3 15 19.7 
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3.4. Statistical Analysis 

 

3.4.1. Notation 

In this study, the response variable (viral load) was denoted by  𝒀𝑖𝑗𝑡𝑖
 , and the time dependent 

explanatory variables, or covariates were denoted by   𝑿𝑖𝑘𝑡𝑖
. In addition, 𝑛 was the number of 

subjects (patients) in the study, 𝑛𝑖 was the number of time points measured for each subject  𝑖, 𝑞 

was the number of response variables, and 𝑝 was the number of explanatory variables, measured 

for each subject and time. The explanatory variables included the indicator variable making it 

special events affecting each subject. There were also time independent explanatory covariates, 

which were denoted as  𝒁𝑖𝑗 ; 𝑓𝑜𝑟 𝑖 =  1, … , 𝑛, 𝑎𝑛𝑑  𝑗 =  1, … , 𝑟. 

 

3.4.2. Exploratory data analysis 

It is a critical process of visualizing the pattern of data as to spot anomalies as well as to check 

assumptions with the help of the summary statistics and graphical representations. Hence, plotting 

individual profiles to carefully study the viral load should be done prior to performing any formal 

model fitting. Therefore, in this study exploratory data analysis was done in order to assess the 

nature of viral load by exploring the average change in viral load over time and the correlation and 

covariance structure. 

 

a) Exploring the Mean Structure 

> 70kg 52 33.8 50 96.2 2 3.8 1.267 0.538 
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The main aim of exploring the mean structure is to choose the fixed effects for the model. To 

explore the overall mean, the response variable was plotted against time. In addition to the overall 

mean, the possible differences between the gender groups, baseline CD4 count, WHO clinical 

stages and adherence were studied by plotting the mean of each group as shown in  Table 3.3 to 

Table 3.7 and Figure 3.1 to Figure 3.5. 

 

Table 3.3: The mean of patients’ viral load taken at each follow-up time 

Time in 

months Mean SD 95% CI 

6 34365.5 183237.8 (5424.68, 63306.32) 

12 31158.3 193622.3 (68.47,     62248.13) 

24 3972.62 18573.69 (237.60,   7707.64) 

36 1653.57 7652.25 (01 ,         3675.96) 

 

 

Figure 3.1: The overall average profile of the viral load taken at Luderitz hospital, from 2015-

2017 

 
1 -368.82  
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In Table 3.3, the estimated mean of the viral load showed a decrease over time. This is a good 

thing as it meant that after the patients were initiated on ART, their viral load has decreased due 

to the effect of the therapy. Figure 3.1 shows a decline in patients’ viral load, this implies that the 

patients’ immune systems were boosted, and the progression of the disease declined over time. 

The mean viral load of patients after 36 months was relatively low 1653.57, this meant that majority 

of the patients had viral loads less than 1000 copies. 

 

Table 3.4: The average profile of the viral load by WHO stage taken at Luderitz hospital 

WHO STAGE 

Time in months 1 2 3 4 

6 38447.94 23525.89 33030.79 3348.33 

12 35616.45 2323.03 41543.17 5614.00 

24 3455.56 1969.28 139.80 44543.36 

36 1744.25 1078.69 2602.92 284.01 

 

 

Figure 3.2: The average profile of the viral load by WHO stage taken at Luderitz hospital, from 

2015-2017 

 

Table 3.4 and Figure 3.2 depict the patients’ mean viral load by baseline WHO clinical stage over 

time. WHO staging is in 4 stages that are categorized according to the CD4 count at baseline or 

progression of the infection looking at the physical appearance of the patient such as skin 
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condition, TB status and other opportunistic infections. In Table 3.4, viral load was high in patients 

with initial clinical stage 1 at almost every time point. This could simply be because some patients 

might have been categorized as stage 1 when they belonged to advanced stages. 

Table 3.5: The average profile of the viral load by CD4 count group taken at Luderitz hospital 

CD4 count group 

Time in months < 𝟐𝟎𝟎 >= 𝟐𝟎𝟎 

6 371163.36 12912.86 

12 71201.76 475.59 

24 14228.37 783.45 

36 1858.29 2034.01 

 

 

Figure 3.3:  The average profile of the viral load by CD4 count group taken at Luderitz hospital 

from 2015-2017 

 

Table 3.5 and Figure 3.3 show the patients’ viral load by baseline CD4 count over time. Patients 

who started the therapy with higher CD4 counts (≥ 200 cells/mm3) had lower viral load at all the 

time points as compared to patients who started ART with low CD4 counts. This is because the 

virus had progressed in the patients with lower CD4 count more than in patients with higher CD4 

counts which means that viral load was higher at baseline for patients with fewer CD4 count.  

Table 3.6: The average profile of the viral load by adherence count group taken at Luderitz 

hospital 
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Adherence 

Time in months 𝟏 𝟐 𝟑 

6 34365.50 - - 

12 15922.39 181712.06 336478.30 

24 4102.61 29.53 - 

36 1705.53 586.42 19.00 

 

 

Figure 3.4:  The average profile of the viral load by adherence group taken at Luderitz hospital 

from 2015-2017 

 

Table 3.6 and Figure 3.4 depict the patients’ viral load by adherence over time. Adherence was 

grouped in to three categories, 1 for good, 2 for fair and 3 for poor. In this study data, adherence 

was not consistent among some patients over time. From Table 3.6 only at time 12 and 36 where 

non-adherent patients were observed, with time 12 having the highest mean viral load.  

Table 3.7: The average profile of the viral load by gender taken at Luderitz hospital 

Gender 

Time in months Female Male 

6 16484.77 79783.60 

12 4959.93 88982.53 

24 7594.37 8317.50 

36 1756.65 1063.18 
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Figure 3.5: The average profile of the viral load by gender taken at Luderitz hospital from 2015-

2017 

 

The mean viral load of patients by gender is shown in Table 3.7 and Figure 3.5. Male patients 

appeared to have higher viral load than the female patients until the 24 months of the therapy. It 

also shows that both males and females had decreasing viral load over time. 

 

b) Exploring variation among individuals 

By considering independent observations, the variability in a response measurement can be 

summarized using single variance parameter   𝜎2 (Diggle et al, 2002). Variance computation is 

given as one half of the expected squared distance between any two randomly selected 

measurements. However, with longitudinal data the distance between measurements on different 

subjects is usually expected to be greater than the distance between repeated measurements taken 

on the same subject (Hedeker & Gibbons, 2006). Taking into account that measurements from the 

same subject are correlated, the interpretation of variance of repeated viral load is given as   

𝜎2(1 − 𝜌𝑗𝑘) = 𝐸 [(𝒀𝑖𝑗 − 𝒀𝑖𝑘)
2

] with the assumption that  𝐸(𝒀𝑖𝑗) =  𝐸(𝒀𝑖𝑘) .  Note that 𝜌𝑗𝑘 >  0 
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shows that between-subject variation is greater than the within-subject variation. On the other 

hand, 𝜌𝑗𝑘 = 1 and 𝒀𝑖𝑗 = 𝒀𝑖𝑘 indicating no variation for repeated viral loads measured on the same 

subject (Hedeker & Gibbons, 2006). 

 

Table 3.8: The variance of the viral load by CD4 count group taken at Luderitz hospital 

CD4 count group 

Time in months < 𝟐𝟎𝟎 >= 𝟐𝟎𝟎 

6 17475172665 5024386863 

12 54196680907 5061963 

24 1516819907 11378275 

36 9339872 92962618 

 

Figure 3.6: The variance profile of the viral load by CD4 count taken at Luderitz hospital from 

2015-2017 
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Table 3.9: The variance of the viral load by WHO stage taken at Luderitz hospital 

WHO STAGE 

Time in months 1 2 3 4 

6 46217514716 8637549740 15600430000 25090561 

12 50673358050 85953932 26680890000 62608050 

24 241378330 66307638 102210.8 5947255010 

36 90767314 6021784 19714300 140461 

 

 

Figure 3.7: The variance profile of the viral load by WHO stage taken at Luderitz hospital 

 

Table 3.10: The variance of the viral load by gender taken at Luderitz hospital 

Gender 

Time in months Female Male 

6 13208038360 83454177266 

12 1093049068 123805257695 

24 1948480260 883477608 

36 72566411 4666523 
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Figure 3.8: The variance profile of the viral load by gender taken at Luderitz hospital 

 

Table 3.8 to Table 3.10 and Figure 3.6 to Figure 3.8 show how viral load varies in patients 

according to their CD4 count, WHO stage and gender. From figure 3.6, variation was high in 

patients who started ART with low CD4 count compared to those with high CD4 counts. From 

figure 3.8, it can be seen that the estimated variance of viral load was higher in males than in 

female patients over time up to the 12th month of therapy and dropped to the same level after the 

24th month of therapy.  

 

c) Correlation Structure 

Since outcome variable can be correlated it is useful to understand the strength of correlation across 

time. In this subsection, correlation structure is explored for understanding components of 

variation and for identifying a correlation model for regression method.  

The correlation matrix used for exploring the correlation structure within the outcome variable is 

given as 
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𝐶𝑜𝑟𝑟(𝒀𝑖) = (

1 𝜌1,2 ⋯ 𝜌1,𝑛

𝜌2,1 1 ⋯ 𝜌2,𝑛

⋮ ⋮ ⋱ ⋮
𝜌𝑛,1 𝜌𝑛,2 … 1

) 

 

which is useful for comparing the strength of association between pairs of outcomes particularly 

when the variance 𝜎𝑗
2 are not constant. Sample estimates of the correlations can be obtained using 

 

 
𝜌𝑗,𝑘 =

1

𝑁 − 1
∑

(𝒀𝑖𝑗 − 𝒀̅.𝑗)

𝜎̂𝑗
𝑖

 
(𝒀.𝑗 − 𝒀̅.𝑘)

𝜎̂𝑘
, 

 

                       (3.1) 

where 𝜎̂𝑗  and 𝜎̂𝑘 are the sample standard deviations of 𝒀𝑖𝑗 and 𝒀𝑖𝑘 respectively. Note that this is 

done across subjects for times 𝑡𝑖 and  𝑡𝑘. 

 

The correlation Matrix 

Table 3.11: Correlation matrix 

Months 6 12 24 36 

6 1.000 0.076 0.293 -0.027 

12 0.076 1.000 0.026 0.076 

24 0.293 0.026 1.000 0.066 

36 -0.027 0.076 0.066 1.000 

 

From the correlation matrix in Table 3.11, the correlation values are different at each time point, 

thus an unstructured correlation is appropriate. 
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3.5. Summary 

This chapter aimed at exploring the average change of viral load in patients initiated on ART from 

January 2015 to December 2017 at Luderitz Hospital in the !Karas region of Namibia. The mean 

structure has shown that on avaerage,  viral load decreased over time in patients until it reached an 

undetectable level which means that on average the therapy had a positive effect on the patients. 

Majority (85.9% and 84%) of the patients who started ART at an early stage (stage 1 and 2) of the 

infection achieved viral suppression within 12 months as compared to those who started therapy 

at an advanced stage (stage 4), patients who started ART at stage 4 are likely to fail on treatment 

as seen in table 3.4. Patients whose CD4 count was below 200 at the initiation of ART had a lower 

suppression rate (83.3%) at 12 months as compared to 87.8% of the ones with CD4 count ≥200 

copies without accounting for 36.4% of the records which were missing. It was also found that on 

average , it takes a year (12 months) for a female patient on ART to achive viral load suppression 

and 2 years (24 months) for a male patient as seen in table 3.7. This could mean that female patients 

had a better adherence rate, or they started ART at an earlier stage of the infection as compared to 

men. Age category of 30–39 years old had the highest viral suppression of 90.6% at 12 months of 

therapy and the lowest (80%) viral suppression was found in the age category of 50 and above 

years as seen in Table 3.2. After exploring the longitudinal viral load data, it was found to be 

highly right skewed. Therefore, log transformation was used to make the data less skewed, this is 

important as it makes the patterns in the data interpretable and helps to satisfy the assumption of 

normality. 
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CHAPTER 4 : MODELING VIRAL LOAD USING MIXED 

EFFECTS MODELS AND GENERALIZED ESTIMATING 

EQUATIONS 
 

4.1. Background 

Studies of HIV dynamics are very important in evaluating the effectiveness of ART. They have 

significantly improved researchers’ and health personnel’s understanding of the pathogens of HIV 

infection and guided the treatment of AIDS patients and evaluation of ART (Huang & Lu, 2008).  

Therefore, viral load is an essential outcome variable across a wide spectrum of HIV research and 

surveillance studies (Rose et al., 2015). According to Huang et al. (2015), following ARV 

treatment, the profile of each subject's viral load tends to follow a dynamic trajectory, indicating 

multiple phases of decline and increase in viral load. Such multiple-phases can be described by a 

random change-point model with random subject-specific parameters.   

 

There are several methods for modeling viral load as an outcome variable. Rose et al. (2015) used 

a log–binomial model and GEE with an exchangeable correlation structure to account for repeated 

measurements within participants. A semiparametric nonlinear mixed-effects (SNLME) model has 

been proposed for the complete viral load data which include the third stage viral load data, i.e., 

the data of those patients who fail the therapy (Ke, C., & Wang, Y., 2001). Haung et al. (2006) 

compared linear and biphasic nonlinear model performance and found that linear modeling may 

result in misleading conclusions because one has to truncate the data. Haung et al. (2015) proposed 

piecewise linear mixed effects models with skew-elliptical distribution to describe the time trend 

of viral load under Bayesian framework and the findings suggested that it is very important to 

assume a model with skew distribution in order to achieve reliable results when the data exhibit 

skewness.  
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Linear mixed effects models have become popular tools for analysis of longitudinal data because 

they are considered to be flexible and applicable (Van et al., 2010). They were developed with the 

idea that each individual in the population has its own mean response profile and subject specific 

effects over time. This makes mixed effects models more favorable as they take into account the 

correlation within repeated measurements from the same subject and deals with time between 

subsequent points unequally (Vangeneugden et al, 2004). As presented in Laird and Ware (1982) 

and Molenberghs and Verbeke (2001), the longitudinal measurements are fitted using a regression 

model that allows parameters to vary among subjects. 

 

Rylence et al. (2019), investigated longitudinal lung function trends among HIV infected children 

in order to describe the evolution of lung disease and access the effect of ART. The analysis was 

performed using linear mixed effects regression modes with covariate parameters evaluated by 

likelihood ratio comparison. The models estimated that early ART initiation in life could prevent 

a deterioration of forced expiratory volume. In the ART-naïve cohort, likelihood ratio comparison 

suggested an improvement in forced vital capacity during the two years following treatment 

initiation, but no evidence among participants established on ART. 

 

Abebe (2020) employed linear mixed effects model to evaluate predictors of longitudinal CD4 cell 

progression of HIV infected children who were under ART. The results revealed that observation 

time, age, WHO clinical stage, history of TB, and functional status had significantly associated 

with mean change in the square root of CD4 cell count and they are the predictor of longitudinal 

CD4 cell change. Furthermore, Koulai et al. (2017) used Bayesian mixed effect model to quantify 
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the recency of HIV infection at individual at individual level. Characteristics of different 

biomarkers that affect the ability to estimate recency were explored through simulation. The 

findings from the analysis suggested that predictive ability was improved by using joint models of 

two biomarkers, accounting for their correlation, rather than univariate models of single 

biomarkers. 

 

On the other hand, GEE is an extension of the generalized linear model (GLM) to correlated data 

(Nelder & Wedderburn, 1972). Repeated measures of the same subject in longitudinal studies are 

correlated because of the continuity of the measurement over time (Rabe-Hesketh & Skrondal, 

2005). To take account of the correlation, specification of a working correlation structure is 

required, it is important to select an appropriate working correlation structure for the repeated 

measures per subject in order to enhance efficiency of estimation of the regression parameter 

(Pardo & Alonso, 2019). 

 

Song, Barnhart, and Lyles (2001) proposed a generalized estimating equations approach to 

estimate the correlation coefficient between two continuous variables, where one or both may be 

left-censored. They presented simulation studies to evaluate point and interval estimates of the 

correlation and compare the GEE results with a maximum likelihood approach. They also 

conducted a simulation study to explore the robustness of GEE estimates to the normality 

assumption. The proposed methods were applied to two HIV viral load data sets from clinical 

studies conducted in Bangkok, Thailand. From their findings, the proposed method can be easily 

extended to incorporate covariates. 
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Unlike linear mixed effects models which are based on the maximum likelihood theory for 

independent observations (Hedeker and Gibbons, 2006), the GEE method is based on the quasi-

likelihood theory (Wedderburn, 1974), and no assumption is made about the distribution of 

response observations. Therefore, some of the statistics derived under the full likelihood theory 

cannot be applied to GEE directly. This includes, Akaike’s information criterion (AIC; Akaike, 

1974), a widely used method for model selection in linear mixed effects models, is not applicable 

to GEE. However, Pan (2001) proposed a model-selection method for GEE and termed it quasi-

likelihood under the independence model criterion (QIC). This criterion can also be used to select 

the best working correlation structure in GEE analyses. 

 

Although, these models have been used in the analysis longitudinal data in several studies, the 

comparison of models with different specifications is not a common practice. In this chapter, the 

use of mixed-effects models and generalized estimating equations with time varying viral load 

response, to model population characteristics and individual variations was proposed.  

 

4.2.  Statistical Methods 

4.2.1.  Notations 

Suppose there were 𝑛 patients under a longitudinal study that collects 𝑛𝑖 repeated viral load 

measurements for 𝑖𝑡ℎ patient (𝑖 = 1, … , 𝑛). Let 𝑌𝑖𝑗 denote the viral load measurements for 𝑖𝑡ℎ 

patient at time (𝑗 = 1, … , 𝑛𝑖) with 𝑌𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)

𝑇
. Let 𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑝)

𝑇
 denote 

𝑝 −dimensional vector of the time-invariant and time-varying covariates measured at baseline and 

subsequent follow-up time for patient 𝑖.  
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4.2.2. Outcome Process Model 

In general, the repeated viral load measurements of 𝑖𝑡ℎ patient measured at follow-up time 𝑗 can 

be expressed as follows:  

 

𝑌𝑖 = [

𝑌11 ⋯ 𝑌1𝑛𝑖

⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑛𝑖

]. 

 

(i) Linear Mixed-Effects model 

The trajectory of the viral load the following model will be used Dynamic Linear Mixed-Effects 

model,     𝑦𝑖𝑗   =  𝝁𝑖
∗(𝑡𝑖𝑗) + 𝜀𝑖𝑗     (4.1) 

                      = 𝜷𝑋𝑖
𝑇 +  𝜂𝑖(𝑡𝑖𝑗) + 𝜀𝑖𝑗, 

where 𝑋𝑖 is a vector of 𝑝 non-dynamic covariates, β are the corresponding coefficients and 𝜂𝑖 a 

stochastic process that may depend on dynamic covariates, 

             𝜂𝑖(𝑡𝑖𝑗) = 𝜱𝑐𝑖(𝑡𝑖𝑗) + 𝑍𝑖(𝑡𝑖𝑗)𝒘𝑖,    (4.2) 

where 𝑐𝑖(𝑡𝑖𝑗) are time-varying covariates and  𝑍𝑖 is the design vector corresponding to the 𝑞 × 1 

vector 𝒘i of random effects. The random effects part models correlations due to the repeated 

measurements within subjects. In this study subject specific random effects model was used to 

model the correlation structures. Let 𝒘𝑖 = (𝑤𝑖0, 𝑤𝑖1)  represent a random intercept and a random 

slope for subject 𝑖, assume that 𝒘𝑖  follows a multivariate normal distribution with mean zero and 

covariance matrix 𝚺𝒘 such that 𝒘𝑖~𝑀𝑉𝑁𝑞(0, 𝚺𝒘), where 

𝚺𝑤 = (
𝜎𝑤0

2 𝜌𝑤𝜎𝑤0
𝜎𝑤1

𝜌𝑤𝜎𝑤0
𝜎𝑤1

𝜎𝑤1
2 ). 
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That is, 

[
𝑤𝑖0

𝑤𝑖1
] ~𝑀𝑉𝑁 {[

0
0

] , [
𝜎𝑤0

2 𝜌𝑤𝜎𝑤0
𝜎𝑤1

𝜌𝑤𝜎𝑤0
𝜎𝑤1

𝜎𝑤1
2 ] }. 

 

(ii) Generalized Estimating Equations 

GEE extends generalized linear models to correlated data but differs from mixed effects models 

in that GEE explicitly fits a marginal model to data (McCullagh and Nelder, 1989). The probability 

distributions used in Generalized Linear Models are related to the one of GEE because they are all 

from the exponential family of distributions. The density function of any member of the 

exponential family takes the following form: 

 
𝑓(𝑦; 𝜃, 𝜙) = 𝑒𝑥𝑝 [

𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
− 𝑐(𝑦, 𝜙)], 

 

(4.3) 

where 𝑎, 𝑏 and 𝑐 are the functions that varies from distribution to distribution (Diggle, 2002). The 

parameter 𝜃 is called the canonical parameter. Let 𝜇𝑖 = (𝜇𝑖1, … , 𝜇𝑖𝑛𝑖
) be a mean vector of response 

variable, where 𝜇𝑖𝑗 is the corresponding 𝑗𝑡ℎ mean. The responses are assumed to be independent 

across patients but correlated within each patient. The marginal model specifies that a relationship 

between 𝜇𝑖𝑗 and the covariates 𝑋𝑖𝑗 is written as follows: 

 𝑔(𝜇𝑖𝑗) = 𝑋𝑖𝑗
𝑇 𝛽        (4.4) 

where 𝑔 is a known link function and 𝛽 is an unknown 𝑝 × 1vector of regression coefficients. The 

conditional variance of 𝑌𝑖𝑗 given 𝑋𝑖𝑗 is specified as 𝑉𝑎𝑟(𝑌𝑖𝑗 |𝑋𝑖𝑗) = 𝑉(𝜇𝑖𝑗)𝜙, where 𝑉 is a known 

variance function of 𝜇𝑖𝑗. Mostly, 𝑉 and 𝜙 depend on the distributions of outcomes. 
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4.2.3. Likelihood Functions 

Likelihood function for Linear Mixed effects model 

Consider 𝑌𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)

𝑇
 as the observed viral load measurements for patient 𝑖 and 𝑓(∙ | ∙) as 

a conditional density function. Let 𝜽 be the unknown vectors of population parameters of a linear 

mixed effects model. The likelihood function of the viral load longitudinal data based on the 

observed data for the model is given as follows: 

 

 

ℒ(𝜽|. ) = ∫ ∏ [{∏ 𝑓(𝑌𝑖𝑗|𝑋𝒊, 𝒘𝒊, 𝜽)

𝑛𝑖

𝑗=1

}] 𝑓(𝒘𝑖|𝜽) 𝑑𝒘𝑖

𝑛

𝑖=1

,    

 

                  = ∫ ∏ [{∏ 𝑓(𝑌𝑖𝑗|𝑋𝒊, 𝒘𝒊, 𝜽)

𝑛𝑖

𝑗=1

}] 𝑓(𝒘𝑖|𝜽) 𝑑𝒘𝑖

𝑛

𝑖=1

, 

 

 

 

 

 

(4.5) 

 

where,𝑓(𝑌𝑖𝑗|𝑋𝒊, 𝒘𝒊, 𝜽) = (2𝜋𝜎𝜖
2) 𝑒𝑥𝑝 (−1

2𝜎𝜖
2⁄ [𝑌𝑖 − (𝜷𝑋𝑖 + 𝜂𝑖(𝑡𝑖𝑗)]

2
) is the probability density 

function of the viral load outcomes conditional on random effects and 𝑓(𝒘𝑖|𝜽) =

(2𝜋)
𝑞

2⁄ |𝚺𝒘|−1/2𝑒𝑥𝑝(− 1
2⁄ 𝒘𝒊

′𝚺𝒘
−1 𝒘𝑖  ) is defined as the probability density function of the 

random effects (Gumedze, & Dunne, 2011).   

 

Quasi-Likelihood for GEE 

The estimating equation of equation (4.5) is the derivative of the log likelihood set equal to zero  
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𝜕

𝜕𝛽
log ℒ(𝑦) = ∑

𝑦𝑖 − 𝜇𝑖

𝑎(𝜙)𝑉(𝜇𝑖)

𝜕𝜇𝑖

𝜕𝛽
  .

𝑛

𝑖=1

 
 

(4.6) 

Integrating equation (4.6) by adding an arbitrary constant to an anti-derivative and obtaining 

another anti-derivative gives,  

∫
𝜕

𝜕𝛽
log ℒ(𝑦)𝑑𝛽𝑥𝑑𝛽𝑧 = ∫ ∑

𝑦𝑖 − 𝜇𝑖

𝑎(𝜙)𝑉(𝜇𝑖)

𝜕𝜇𝑖

𝜕𝛽
𝑑𝛽

𝑛

𝑖=1

 

                                   = ∫ ∑
𝑦𝑖 − 𝜇𝑖

𝑎(𝜙)𝑉(𝜇𝑖)
𝑑𝜇𝑖.

𝑛

𝑖=1

 

 

 

(4.7) 

Integrating equation (4.7) in this case will not yield a true log-likelihood, but instead generates 

something referred to as a quasi-likelihood (although it might be better to call it a quasi-

loglikelihood). The formal definition of the quasi-likelihood is that it is the anti-derivative of the 

generalized estimating equation evaluated at the parameter estimates (Wedderburn, 1974)  

𝑄(𝑦; 𝜇) = ∫
𝑦𝑖 − 𝑢

𝑎(𝜙)𝑉(𝜇)
𝑑𝜇.

𝜇̂

𝑦

 

 

(4.8) 

 

4.3.  Data Analysis 

The study population included all HIV/AIDS patients initiated on antiretroviral therapy (ART) 

follow-up from January 2015 to December 2017 at the Luderitz Hospital in the !Karas region of 

Namibia. One response variable was considered in this study, which was the longitudinal viral 

load of HIV adult patients initiated on ART. A viral load test is used to measure the amount of 

HIV virus in a sample of blood, the number of copies per milliliter (copies/ml) of blood were 

measured at 6 months, 12 months and yearly after. Predictor variables of 154 patients considered 
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for the response variable were gender, follow-up time, weight at baseline, adherence, age at 

baseline, WHO stage, weight at follow-up time and CD4 count at baseline.  

Thus, the model functions with covariates were specified as follow: 

 

Mixed effect model 

 

𝑙𝑜𝑔(𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑𝑖𝑗) = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽3𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 +  𝛽4𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖

+  𝛽5𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖  +  𝜙1𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝜙2𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗

+ 𝛽6𝐹𝑜𝑙𝑙𝑜𝑤. 𝑢𝑝. 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽7𝐴𝑔𝑒𝑖  +  𝛽8𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒2𝑖

+ 𝛽9𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒3𝑖 + 𝛽10𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒4𝑖 + 𝜙3𝑊𝑒𝑖𝑔ℎ𝑡. 𝑎𝑡. 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗

+ 𝛽11𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐶𝐷4𝑖
+ 𝑤𝑖0 + 𝑤𝑖1𝑇𝑖𝑚𝑒𝑖𝑗 + 𝜖𝑖𝑗. 

 

Generalized Estimating Equations (GEE) 

𝑙𝑜𝑔(𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑𝑖𝑗) = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽3𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 +  𝛽4𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖

+  𝛽5𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖  +  𝜙1𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝜙2𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗

+ 𝛽6𝐹𝑜𝑙𝑙𝑜𝑤. 𝑢𝑝. 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽7𝐴𝑔𝑒𝑖  +  𝛽8𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒2𝑖

+ 𝛽9𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒3𝑖 + 𝛽10𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒4𝑖 + 𝜙3𝑊𝑒𝑖𝑔ℎ𝑡. 𝑎𝑡. 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗

+ 𝛽11𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝐶𝐷4𝑖 . 

The analysis was conducted as follows:  

First, fixed effects model was used to analyze viral load longitudinal measures using the lm 

function in the LMER package in R. Secondly, linear mixed-effects model was fit by REML in R. 

A comparison of the above stated models was made, and the most appropriate model was chosen. 
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In addition, the Generalized Estimating Equations (GEE) with different working correlation 

structures was used, with the analysis implemented using the geepack in R. 

 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used for 

model selection to evaluate and select the best model for fixed and linear mixed effects models, 

while for GEE model, the Quasi-Information Criterion (QIC) was used. 

 

4.4. Results 

 

4.4.1 Mixed Effects Model 

Table 4.1 shows parameter estimation of a full model for both fixed effects model and linear mixed 

effects model. From the table, the fixed effect model had two variables that had a significant effect 

on the model which were gender and WHO-Stage IV with p-values of 0.002 and 0.029, 

respectively. On the other hand, the mixed effects model had only one significant variable which 

was baseline weight with a p-value of 0.049. Initially, non-significant variables were being avoided 

and removed one by one starting with the most non-significant variable then compare the two 

models. First, adherence with time interaction was removed since it was the most non-significant 

with p-values of 0.513 and 0.198, the model was fit again but there was no significant difference, 

then weight at follow-up and time were also removed. Having done this, the final reduced model 

with fewer variables is given below and the results are presented in Table 4.2. 

 

Table 4.1:  Parameter estimation of LM-Fixed Effects Model and Linear Mixed Effects Model 

  LM-Linear Model 

(Fixed Effects) 

LME-Linear Mixed 

Effects Model 
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𝑪𝒐𝒆𝒇 𝒍𝒐𝒈(𝑬𝒔𝒕) t-value Std 

Error 

p-value 𝒍𝒐𝒈(𝑬𝒔𝒕) t-value Std 

Error 

p-value 

Fixed Effects:         

Intercept (𝛃𝟎) 7.059 6.614 1.154 0.000 6.696 5.109 1.317 0.000 

Time (𝛃𝟏) -0.072 -1.215 0.060 0.223 -0.065 -1.266 0.052 0.207 

Gender (𝛃𝟐):         

ref.Female         

Male 0.844 2.995 0.282 0.002 0.671 1.730 0.391 0.074 

 

Baseline Weight (𝛃𝟑) -0.036 -1.639 0.022 0.102 -0.043 -1.973 0.022 0.049 

Weight at Follow (𝛃𝟒) -0.021 -0.783 0.027 0.434 -0.0149 -0.662 0.023 0.508 

Adherence:         

ref.Good          

Fair (𝛃𝟓) 1.235 0.443 2.787 0.658 1.8429 0.861 2.142 0.389 

Poor(𝛃𝟔) 2.779 1.668 1.666 0.096 1.811 1.349 1.344 0.178 

Adherence ×Time:         

ref.Good         

Fair(𝛟𝟏) 0.022 0.186 0.119 0.513 -0.096 -1.030 0.094 0.303 

Poor(𝛟𝟐) -0.065 -0.654 0.100 0.198 0.0402 -0.480 0.084 0.631 

Weight at Follow 

up×Time (𝛟𝟑) 

0.001 1.289 0.001 0.198 0.0009 1.246 0.001 0.214 

Age (𝛃𝟕): 0.020 1.372 0.014 0.170 0.0202 1.016 0.020 0.311 

WHO.Stage:         

ref.Stage I         

Stage II (𝛃𝟖) -0.356 -1.140 0.312 0.255 -0.412 -0.897 0.459 0.370 

Stage III(𝛃𝟗) -0.428 -1.266 0.338 0.206 -0.451 -0.978 0.462 0.328 

Stage IV (𝛃𝟏𝟎) 1.729 2.180 0.793 0.029 -0.040 -0.479 1.171 0.632 

Baseline CD4:         

ref. < 200         

     ≥ 200 (𝛃𝟏𝟏) -0.588 -1.566 0.376 0.118 0.578 1.044 0.524 0.297 

Random Effects:         

σw0
2      4.507    

σw1
2      0.004    

ρ     -0.579    

σϵ
2     2.271    

Model selection:         

AIC 2067.295    2002.516    

BIC 2137.153     2083.977    

LogLik -1016.648    -981.258    
  

 

 

The reduced model is as follows: 
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log(𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑𝑖𝑗) = 𝛽0 + 𝛽1𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽2𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 +  𝛽3𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖

+  𝛽4𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖   + 𝛽5𝐴𝑔𝑒𝑖 +  𝛽6𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒2𝑖 + 𝛽7𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒3𝑖 

+𝛽8𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒4𝑖 + 𝛽9𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝐶𝐷4𝑖 + 𝑤𝑖0 + 𝑤𝑖1𝑇𝑖𝑚𝑒𝑖𝑗 + 𝜖𝑖𝑗 

Table 4.2:  Parameter estimation of LM-Fixed Effects Model and Linear Mixed Effects Model 

for reduced model 

  LM-Linear Model  

(Fixed Effects) 

LME-Linear Mixed 

Effects Model 

𝑪𝒐𝒆𝒇 𝒍𝒐𝒈(𝑬𝒔𝒕) t-value S.E p-

value 

𝒍𝒐𝒈(𝑬𝒔𝒕) t-value S.E p-value 

Fixed Effects:         

Intercept (𝛃𝟎) 6.020 7.942 0.758 0.000 5.802  5.354     1.084 0.000 

Gender (𝛃𝟏):         

ref.Female         

Male 0.837 2.982 0.281 0.002 0.671 1.787 0.389 0.025 

Baseline Weight 

(𝛃𝟐) 

-0.042 -4.801 0.009 0.000 -0.043 -3.495 0.012 0.001 

Adherence         

ref.Good         

Fair (𝛃𝟑) 1.619 1.652 0.980 0.099 -0.293 -0.403 0.727 0.687 

Poor (𝛃𝟒) 1.888 2.241 0.843 0.026 1.269 1.918 0.662 0.056 

Age (𝛃𝟓): 0.021 1.492 0.014 0.137 0.027 1.368 0.020 0.173 

WHO.Stage         

ref.Stage I         

Stage II (𝛃𝟔) -0.356 -1.150 0.309 0.251 -0.379 -0.834 0.454 0.406 

Stage III (𝛃𝟕): -0.426 -1.295 0.329 0.196 -0.406 -0.892 0.455 0.373 

Stage IV (𝛃𝟖): 1.758 2.238 0.786 0.026 1.584 1.373 1.154 0.172 

Baseline CD4 :         

ref.< 200         

≥ 200  (𝛃𝟗): -0.5921 -1.607 0.368 0.1087 -0.493 -0.951 0.519 0.343 

Random Effects:         

σw0
2      4.679    

σw1
2      0.004    

ρ     -0.619    

σϵ
2     2.259    

Model selection:         

AIC 2059.405    1963.635    

BIC 2108.716    2024.903    

LogLik -1017.702    -966.818    
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In Table 4.2, three estimated variance components (σw0
2 , σw1

2 and  𝜎𝜖
2) are shown. These are the 

random effects variance and the residual variance for the LMEM. The residual variance is 

𝑣𝑎𝑟(𝜖𝑖𝑗) = 𝜎𝜖
2 = 2.259 and for the random effects, 𝑣𝑎𝑟(𝑤0) = 𝜎𝑤0

2 = 4.679 and 𝑣𝑎𝑟(𝑤1) =

𝜎𝑤1
2 = 0.004. Assuming normal distrubution of random effects √4.679 = 2.163, implies that 

95% of female patients had a mean viral load value between 𝑒5.802 −2.163×1.96 = 4.771 and 

𝑒5.802 +2.163×1.96= 29959.338. The total variability between patients is estimated as 𝜎𝑤0
2 + 𝜎𝑤1

2 =

4.679 + 0.004 = 4.683, while the total valiability within patients is 2.259.  

In addition, the total variation in viral load values is estimated to be 2.259 + 4.683 = 6.942.  The 

proportion of total variability that is attributed to within-patient variation is given by  

2.259/6.942 = 0.325(32.5%), while the proportion of total variability attributed to between-

patient variation of Viral load values is  4.683/6.942 = 0.675(67.5%). Hence, less than half of 

the variation is explained by the residuals.  The correlation 𝜌 = −0.619 indicates a negative 

correlation between intercept and slope of linear time effect for the random part. This implies that 

when patient’s intercept increase by one unit of standard deviation, their slope would decrease by 

0.619  standard deviation. 

All fixed effects parameters in both Fixed Effects and Mixed-effects models have specific 

interpretation. From table 4.2, the intercept 𝑒𝛽0 = 𝑒6.020 = 411.579 and 𝑒𝛽0 = 𝑒5.802 =

330.961, are the estimates of the 𝑖𝑡ℎ female patient mean viral load value given that her adherence 

was good, she was in clinical stage I  and her CD4 count was below 200 cells/mm3 . In the same 

way, the coefficients for  gender were 𝛽1 = 0.837 and 𝛽1 = 0.671, hence the mean viral load 

value for the 𝑖𝑡ℎ male patient were  𝑒0.837 = 2.309 and  𝑒0.671 = 1.956 times high than female 

patient and their difference was significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.003 𝑎𝑛𝑑 0.025) at 5% level of 
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significance. The cofficients for fair adherence were 𝛽3 = 1.619 and 𝛽3 = −0.293, for poor 

adherence the coefficients are 𝛽4 = 1.888 and 𝛽4 = 1.269 implies that the viral load for a patient 

with fair adherence or poor adherence were 𝑒1.619 = 5.048 and  𝑒−0.293 = 0.746 or  𝑒1.888 =

6.606 and  𝑒1.269 = 3.557 times higher than that of a patient with good adherent. The coefficients 

for WHO stage II were 𝑒𝛽6 = 𝑒−0.356 = 0.700 and 𝑒𝛽6 = 𝑒−0.379 = 0.685 which indicates that 

the mean viral load was lower than that of patients who were in WHO stage I. The coefficients for 

WHO stage III were 𝑒𝛽7 = 𝑒−0.426 = 0.653 and 𝑒𝛽7 = 𝑒−0.406 = 0.666 which indicates that the 

mean viral load was lower than that of patients who were in WHO stage I . The coefficients for 

WHO stage IV were 𝑒𝛽8 = 𝑒1.758 = 5.801 and 𝑒𝛽8 = 𝑒1.584 = 4.874 which implies that the mean 

viral load was 5.801 and 4.874 times higher than that of patients who were in WHO stage I . The 

coefficients for CD4 count were 𝑒−0.592 = 0.553 and 𝑒−0.493 = 0.611 which implies that the 

mean viral load was lower in patients with less than 200 𝑐𝑒𝑙𝑙/𝑚𝑚3.  

Now a comparison between the models using AIC and log likelihood ratio test was peformed to 

choose the best model. In Table 4.1 and Table 4.2, the AIC value of fixed effects model decreased 

from 2067.295 to 2059.405 which shows that the model with fewer variables (reduced model) was 

improved as compared to the full model (model with all variables). This result was confirmed by 

the likelihood ratio test(𝑝 < 0.000). Similarly, the AIC value for Linear Mixed Effects model also 

decreased from 2002.516 to 1963.635 which implies that the reduced model was better compared 

to the full model, hence the model with fewer variables was preferred. The mixed effects model 

had smaller AIC values in both models as compared to the fixed effects model, thus it was preferred 

to the fixed effects model. 
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4.4.2 Generalized Estimating Equations 

In this subsection the data was analyzed using the Generalized Estimating Equations. Two 

different working correlation structures were considered (Unstructured and Independence) and 

compared. In order to build the GEE model, the model with all the variables was first considered. 

That is  

𝑙𝑜𝑔(𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑𝑖𝑗) = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽3𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 +  𝛽4𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖

+  𝛽5𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖  +  𝜙1𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝜙2𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗

+ 𝛽6𝐹𝑜𝑙𝑙𝑜𝑤. 𝑢𝑝. 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽7𝐴𝑔𝑒𝑖  +  𝛽8𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒2𝑖

+ 𝛽9𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒3𝑖 + 𝛽10𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒4𝑖 + 𝜙3𝑊𝑒𝑖𝑔ℎ𝑡. 𝑎𝑡. 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗

+ 𝛽11𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝐶𝐷4𝑖  

 

Table 4.3: Comparison of unstructured and independence working correlation structures based 

on the full model 

GEE with Unstructured 

correlation  

GEE with Independence 

correlation 

Coef 𝒍𝒐𝒈(𝑬𝒔𝒕) Naïve 

S.E 

Robust 

S.E 

p-

value 

𝒍𝒐𝒈(𝑬𝒔𝒕) Naïve 

S.E 

Robust 

S.E 

p-value 

         

Intercept (𝛃𝟎) 6.982 1.297 1.438 0.000 7.059 1.154 1.478 0.000 

Time (𝛃𝟏) -0.076 0.057 0.051 0.188 -0.072 0.060 0.055 0.188 

Gender (𝛃𝟐):         

ref.Female 
 

   
 

   

Male 0.788 0.357 0.363 0.019 0.844 0.281 0.361 0.019 

Baseline Weight (𝛃𝟑) -0.046 0.021 0.018 0.079 -0.036 0.022 0.0207 0.079 

Adherence:         

ref.Good 
 

   
 

   

Fair  (𝛃𝟒) 0.653 2.405 7.746 0.838 1.235 2.787 6.055 0.838 

Poor  (𝛃𝟓) 1.873 1.477 1.100 0.106 2.779 1.666 1.717 0.106 

Follow-up Weight (𝛃𝟔) -0.011 0.024 0.021 0.136 -0.021 0.027 0.026 0.408 

Adherence ×Time:         

ref.Good 
 

   
 

   

Fair (𝛟𝟏) 0.000 0.107 0.288 0.926 0.022 0.118 0.237 0.926 

Poor (𝛟𝟐) -0.037 0.095 0.036 0.195 -0.065 0.100 0.050 0.195 
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Weight at Follow up×Time 

(𝛟𝟑) 

0.001 0.001 0.001 0.407 0.001 0.001 0.001 0.142 

Age (𝛃𝟕) 0.021 0.018 0.021 0.338 0.019 0.014 0.021 0.215 

WHO. Stage :         

ref.Stage I 
 

   
 

   

Stage II  (𝛃𝟖) -0.295 0.404 0.465 0.428 -0.356   0.312 0.449 0.428 

Stage III (𝛃𝟗) -0.435 0.423 0.394 0.273 -0.428 0.338 0.390 0.273 

Stage IV  (𝛃𝟏𝟎) 1.773 1.034 1.445 0.215 -0.428    0.793 1.395 0.215 

Baseline CD4 (𝜷𝟏𝟏):         

         

ref.< 200 
 

   
 

   

≥ 200 -0.514 0.478 0.552 0.291 -0.589    0.376 0.558 0.291 

         

Model selection:         

QIC 2468.9    2485.9    

Quasi-Likelihood -1207.9    -1213.9    

Trace 26.500    29.100    

 

 

To compare the two working correlation structures, naïve and robust standard error estimates for 

both correlation structures were considered first to see how close the results were to each other. 

As shown in Table 4.3, naïve and robust standard error estimates for the unstructured correlation 

were close to each other as compared to those of the independence correlation. This meant that 

unstructured correlation was a good working correlation structure for the data. Comparing the two 

working correlation structures using Quasi-Likelihood Criterion (QIC), the unstructured working 

correlation had QIC of 2468.9 compared to 2485.9 value for the independence working correlation. 

Therefore, from both considerations, the model with unstructured working correlation structure 

was preferred. 

 

Using the unstructured working correlation structure, significant variables were selected using p-

values. From Table 4.3, weight at follow up, adherence with time interaction and weight at follow 

up with time interaction were not significant at 5% level of significance. As discussed earlier, non-
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significant variables were removed one by one starting from the most non-significant. The most 

non-significant variable was adherence with time interaction with p-values of 0.999 and 0.304, it 

was therefore removed. This process was repeated for the second time whereby weight at follow 

up and weight at follow up with time interaction were removed and the final model was as given 

below. 

 

𝑙𝑜𝑔(𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑𝑖𝑗) = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟𝑖 +  𝛽3𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 +  𝛽4𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2𝑖

+  𝛽5𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3𝑖   + 𝛽6𝐴𝑔𝑒𝑖 +  𝛽7𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒2𝑖 + 𝛽8𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒3𝑖

+ 𝛽9𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒4𝑖 + 𝛽10𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝐶𝐷4𝑖 

 

Table 4.4: Comparison of unstructured and independence working correlation structures based 

on the reduced model 

GEE with Unstructured 

correlation  

GEE with Independence 

correlation 

Coef 𝒍𝒐𝒈(𝑬𝒔𝒕) Naïve 

S.E 

Robust 

S.E 

p-

value 

𝒍𝒐𝒈(𝑬𝒔𝒕) Naïve 

S.E 

Robust 

S.E 

p-value 

         

Intercept (𝛃𝟎) 5.932 0.998 1.148 0.000 5.981 0.784 1.136 0.000 

Time (𝛃𝟏) -0.003 0.012 1.148 0.794 -0.02 0.011 0.011 0.839 

Gender (𝛃𝟐):         

ref.Female 
 

   
 

   

Male 0.788 0.356 0.362 0.032 0.838 0.281 0.358 0.019 

Baseline Weight (𝛃𝟑) -0.042 0.011 0.556 0.001 -0.042 0.009 0.013 0.001  

Adherence:         

ref.Good 
 

   
 

   

Fair (𝛃𝟒) 0.588 0.881 2.177 0.787 1.603 0.985 1.668 0.337 

Poor  (𝛃𝟓) 1.349 0.717 0.728 0.064 1.890 0.844 1.102 0.068 

Age (𝛃𝟔) 0.024 0.018 0.020 0.235 0.021 0.014 0.020 0.292 

WHO. Stage :         

ref.Stage I 
 

   
 

   

Stage II  (𝛃𝟕) -0.287 0.401 0.465 0.537 -0.359  0.310 0.454 0.428 

Stage III (𝛃𝟖) -0.392 0.416 0.404 0.331 -0.425 0.329 0.401 0.288 

Stage IV  (𝛃𝟏𝟗) 1.829 1.028 1.428 0.200 1.748    0.788 1.369 0.202 

Baseline CD4 (𝜷𝟏𝟎):         

ref.< 200 
 

   
 

   

≥ 200 -0.551 0.472 0.557 0.322 -0.597    0.400 0.553 0.280 
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Model selection         

QIC 2464.3    2477.4    

Quasi-Likelihood -1213.5    -1218.5    

Trace 18.6    20.2    

 

 

As seen in Table 4.4, the naïve and robust standard error estimates for unstructured correlation 

were still close to each other as compared to those of the independence correlation. This implies 

that using the reduced model, the unstructured working correlation structure was the best for the 

study data. Using the unstructured working correlation structure model, the intercept (𝑒𝛽0 =

376.908) is an estimate of the average viral load at baseline for 𝑖𝑡ℎ female patient which was 

significantly different from zero (p<0.00). Also, the coefficient for gender (𝛽2 =0.788), indicates 

the average viral load in male patients was 2.199 times higher in male patients.  

 

Similarly, comparing the two working correlation structures for the reduced models using QIC, 

the following values 2464.3 and 2477.4 for unstructured and independence working correlation 

structures were obtained respectively. Again, the model with unstructured working correlation 

structure was preferred. 

 

4.5. Comparison of Mixed effects and GEE models 

To compare the two models, their respective standard error estimates were used, for the GEE 

model the robust standard errors for unstructured correlation structure were used. To compare the 

models full model results for LMEM (Table 4.2) and GEE (Table 4.3) were used. This was 

because the most non-significant covariates were removed from the final models, so it was not 

possible to compare two models having different numbers of covariates. The standard error 
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estimates of LMEM were smaller than that of the GEE. In other words, the LMEM fitted the data 

with smaller disturbance than GEE, therefore, LMEM model was better than GEE.  

 

4.6. Summary 

This chapter modeled the change of viral load in HIV patients on ART using longitudinally 

measured viral load data. Since the data was correlated and continuous, two models (GEE and 

MRMs) were applied. In modeling with MRMs, two models were used which were fixed-effects 

models and mixed effects models. From the MRMs’ final results model (Table 4.2), gender and 

baseline weight were found to be significant factors of viral load at 5% significance level. For GEE 

models, two correlation structures were chosen for modeling the data, which were unstructured 

and independence structures. From the results of the GEE (Table 4.4), only gender and baseline 

weight were found to be  significant predictors for vrial load at 5% significance level. The findings 

are discussed in details in chapter 6.  
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CHAPTER 5 : MODELING VIRAL LOAD WITH RESPONSE 

MISSINGNESS AND COVARIATE MEASUREMENT ERROR 

 

5.1. Background 

 

In health sciences, and biostatistics fields, longitudinal studies are conducted in which repeated 

measurements are collected from the same subject over time in order to monitor disease 

progression and treatment outcomes. However, incomplete data are quite common in such studies, 

this is because subjects may not be available to be measured or observed at all the time points. 

Moreover, a subject can be missing at one follow-up time and then measured again at one of the 

next, resulting in non-monotone missing data patterns. Such data present considerable challenges 

in statistical inference for statisticians (Carroll et al., 2006; Yi, 2008). 

 

In literature, there have been considerable interest in accommodating either incompleteness or 

covariate measurement error under random effects models. In addition, there have been extensive 

research on either covariate measurement error or missing responses, but relatively little work have 

been done to address both simultaneously, (Yi,  Ma & Carroll, 2012). Furthermore, there is a need 

to fill up this gap as longitudinal data do often have both characteristics (Yi, Liu, & Wu, 2011).  

This problem has been discussed by several authors (Yi, Liu, & Wu, 2011; Huang & Dagne, 2012; 

Yi, 2008; Xiong and Yi, 2019). 

 

Yi, Liu and Wu (2011) investigated the effects on inference when both missing responses and error 

in covariates exist. They proposed a two-stage modeling approach for generalized linear mixed 

javascript:;
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models in order to modulate the response process in connection with covariates and conducted 

simulation studies in order to assess its performance. They further demonstrated that substantial 

finite- sample biases would be induced if missingness and measurement error are not properly 

accounted for. This ignorance has an impact on estimation of every regression coefficient, 

including the covariate effect for error-prone covariate and the one for precisely measured 

covariate.     

 

Huang and Dagne (2012), studied the simultaneous impact of skewness, missingness, and 

covariate measurement error by jointly modeling the response and covariate processes based on a 

flexible Bayesian semiparametric nonlinear mixed effects (SNLME). They found that it was 

important to take the CD4 measurement errors and viral load missing data into account. They 

further found that the missing viral load data were likely to be non-ignorable and, thus, estimates 

under a non-ignorable missing data model might be more reliable than those under an ignorable 

missing data model. 

 

Yi (2008) proposed a simulation based marginal method to adjust for the bias induced by 

measurement error in covariates as well as by missingness in response. The proposed method 

focused on modeling the marginal mean and variance structures, and the missingness at random 

mechanism was assumed and it does not require the full specification of the distribution of the 

response variable. 

 

Based on ignorable data, standard software for longitudinal data that accommodates unbalanced 

observations can be used. These include the SAS procedures MIXED, GLIMMIX, NLMIXED, 
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SPlus, and R functions lme and nlme (Ibrahim & Molenberghs, 2009). Such tools eliminate 

complete-case bias by incorporating all available information. However, in the non-ignorable case, 

methods that do not model the missing data mechanism are subject to bias. Xiong and Yi, 2019 

developed an R package, called swgee, which implements the method proposed by Yi (2008). 

Moreover, this package includes additional implementation steps which extend the setting 

considered by Yi (2008). Xiong and Yi, (2019) mentioned that the swgee method does 

significantly improve the performance of the GEE analysis. This package employs the simulation 

extrapolation (SIMEX) algorithm to account for the effect of measurement error in covariates. 

 

Thus, in this chapter the swgee package developed by Xiong and Yi, 2019 to adjust for the bias 

induced by measurement error in covariates as well as missingness in response variable was used 

to analyze the longitudinal viral load data. This was also implemented in order to significantly 

improve the results of the GEE model in chapter 4. 

 

5.2. Statistical Methods 

5.2.1. Notations 

Suppose there were 𝑛 patients under a longitudinal study that collects 𝑛𝑖 repeated viral load 

measurements for 𝑖𝑡ℎ patient (𝑖 = 1, … , 𝑛). Now, let 𝑌𝑖𝑗 denote viral load measurements for 𝑖𝑡ℎ 

patient at time (𝑗 = 1, … , 𝑛𝑖) with 𝑌𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)

𝑇
. Let 𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑛𝑖

)
𝑇
 denote vector of 

the time-invariant and time-varying covariates measured at baseline and subsequent follow-up 

time for patient 𝑖. Also let, 𝑍𝑖 = (𝑍𝑖1, … , 𝑍𝑖𝑛𝑖
)

𝑇
 be the vector of covariates which are error-free. 

Suppose 𝐷𝑖𝑗 is the missingness indicator of 𝑖𝑡ℎ patient at time  𝑗 that takes 1 for presence and 0 for 

absence, where  𝐷𝑖 = (𝐷𝑖1, … , 𝐷𝑖𝑛𝑖
)

𝑇
. 
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In this study there was only one type of missing data mechanism, that is 𝑌𝑖𝑗 is missing due to 

dropout if 𝑌𝑖𝑗  and all subsequent measurement (𝑌𝑖𝑗+1, … , 𝑌𝑖𝑛𝑖
) are missing, meaning the patient 

missed 𝑛𝑖
𝑡ℎ measurements and never came back for later measurements. Although it could be 

possible that some dropouts might have reappeared subsequently if the study had continued beyond 

𝑛𝑖 measurements, this could not be identified based on the observed data and thus it will not be 

considered in this study. The missing indicator is defined by 

𝐷𝑖𝑗 = {
𝐷𝑜𝑏𝑠 = 1,   𝑖𝑓  𝑌𝑖𝑗  𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐷𝑚𝑖𝑠 = 0, 𝑖𝑓 𝑌𝑖𝑗  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 
. 

 

5.2.2. Outcome Process Model 

For 𝑖 = 1, … , 𝑛 and  𝑗 = 1, … , 𝑛𝑖, let 𝜇𝑖𝑗 = 𝐸(𝑌𝑖𝑗|𝑿𝑖 , 𝒁𝑖) and 𝑣𝑖𝑗 = 𝑣𝑎𝑟(𝑌𝑖𝑗|𝑿𝑖, 𝒁𝑖) be conditional 

expectation and variance of 𝑌𝑖𝑗, given the covariates 𝑋𝑖 and 𝑍𝑖, respectively. The influence of the 

covariates on the marginal response mean modeled by means of regression model: 

 𝑔(𝜇𝑖𝑗) = 𝑋𝑖𝑗
𝑇 𝛽𝑥 + 𝑍𝑖𝑗

𝑇 𝛽𝑧, (5.1) 

where 𝜷 = (𝛽𝑥
𝑇 , 𝛽𝑧

𝑇)𝑇 is the vector of regression parameters and 𝑔( . ) is a specified monotone 

function. 

To model the variance of 𝑌𝑖𝑗, consider 

 𝑣𝑖𝑗 = ℎ(𝜇𝑖𝑗; 𝜑), (5.2) 

where ℎ(𝜇𝑖𝑗; 𝜑) is a given function and 𝜑 is the dispersion parameter that is known or to be 

estimated. The parameter 𝜑 is treated as known here with emphasis setting on estimation of the 𝛽 

parameter. 
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Model for the missing data mechanism 

Suppose that 𝐷𝑖1 = 1 for every patient 𝑖.  In order to reflect the dynamic nature of the observation 

process over time, a MAR mechanism for the missing process is assumed. This implies that, given 

the covariates, the missingness probability depends on the observed responses but not unobserved 

response components (Little & Rubin, 2002). Let 𝜋𝑖𝑗 = 𝑃(𝐷𝑖𝑗 = 1|𝐷𝑖𝑗−1 = 1, 𝑿𝑖, 𝒁𝑖 , 𝒀𝑖) and 

𝜆𝑖𝑗 = 𝑃(𝐷𝑖𝑗 = 1|𝑿𝑖 , 𝒁𝑖, 𝒀𝑖), then 

 

𝜆𝑖𝑗 = ∏ ∏ 𝜋𝑖𝑗

𝑛𝑖

𝑗=2

𝑛

𝑖=1

. 
 

(5.3) 

The logistic regression model for dropout process is given by: 

 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗) = 𝒖𝑖𝑗
′ 𝜶, (5.4) 

where 𝒖𝒊𝒋 is the vector consisting of information of the covariates 𝑿𝑖 , 𝒁𝑖 and the observed 

responses. 

Suppose that 𝑌𝑖 = (𝑌𝑜𝑏𝑠;𝑖𝑗, 𝑌𝑚𝑖𝑠;𝑖𝑗), where 𝑌𝑖 consists of observed and missing viral load 

measurements and 𝑓(∙ | ∙) as a conditional density function. Let 𝜽 and 𝝓 be the unknown vectors 

of population parameters of GEE model repeated measures and of the missingness mechanism, 

respectively.  

Let 𝜋𝑖𝑗(𝑌𝑖𝑗) = Pr (𝐷𝑖𝑗 = 1|𝑌𝑖𝑗
𝑇 , 𝑋𝑖

𝑇 , 𝑍𝑖
𝑇) be the missing probability function at time 𝑗. The 

missingness probability is modelled by 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗) = 𝛼0 + 𝛼𝑎𝑌𝑖𝑗 + 𝛼𝑏𝑋𝑖
𝑇 +  𝛼𝑐𝑍𝑖

𝑇 , where 𝜶 =

{𝛼𝑎, 𝛼𝑏 , 𝛼𝑐} is a vector that describes how the missingness at follow-up 𝑗 depends on the 

measurements 𝑌𝑖
𝑇 = {𝑌𝑖1, . . , 𝑌𝑖𝑛𝑖

}, and in particular, 𝛼𝑐 is a 𝑝 × 1 parameter vector that governs 

the missingness and covariate associations.  Therefore, 𝑓(𝐷𝑖|𝑿𝑖, 𝒁𝑖 , 𝝓) is the density function of 

missingness indictor, with the missing data assumed be generated by the logistic model 
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𝑃𝑟𝑜𝑏(𝐷𝑖𝑗 = 1|𝑌𝑖𝑗
𝑇 , 𝑋𝑖

𝑇 , 𝑍𝑖
𝑇) =  

exp (𝛼0 + 𝛼𝑎𝑌𝑖𝑗 + 𝛼𝑏𝑋𝑖
𝑇 +  𝛼𝑐𝑍𝑖

𝑇)

1 + exp (𝛼0 + 𝛼𝑎𝑌𝑖𝑗 + 𝛼𝑏𝑋𝑖
𝑇 +  𝛼𝑐𝑍𝑖

𝑇)
 

 

 

(5.5) 

Note that, when 𝑌𝑖 is not observed, 𝑌𝑚𝑖𝑠𝑠,𝑖𝑗 is sampled from its conditional distribution. 

 

Measurement error model 

Let 𝑾𝑖𝑗 be the observed measurements of the covariates 𝑿𝑖𝑗. The covariates 𝑿𝑖𝑗 and their observed 

measurements 𝑾𝑖𝑗 are assumed to follow a classical additive measurement error model:                                                                      

 𝑾𝑖𝑗 = 𝑿𝑖𝑗 + 𝝐𝑖𝑗 ,                                     (5.6) 

 where the 𝝐𝑖𝑗 are independent of 𝑿𝑖𝑗 , 𝒁𝑖𝑗 and 𝒀𝑖. Note that  𝝐𝑖𝑗 follows 𝑁(𝟎, 𝚺𝜖) with covariance 

matrix 𝚺𝜖 = (
𝜎1

2 𝜎12

𝜎21 𝜎1
2 ). 

 

5.3. Application 

The study population includes all HIV/AIDS patients initiated on antiretroviral therapy (ART) 

follow-up from January 2015 to December 2017 at the Luderitz Hospital in the !Karas region of 

Namibia. One response variable was considered in this study, which was the longitudinal viral 

load of HIV adult patients initiated on ART. A viral load test is used to measure the amount of 

HIV in a sample of blood, the number of copies per milliliter (copies/ml) of blood were measured 

at 6 months, 12 months and yearly after. Predictor variables of 154 patients considered for the 

response variable were gender, follow-up time, weight at baseline, adherence, Age at baseline, 

WHO stage, weight at follow-up time and CD4 count at baseline.  

 

The response and the covariates were specified by the following regression model: 
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𝑙𝑜𝑔(𝑉𝑖𝑟𝑎𝑙𝐿𝑜𝑎𝑑𝑖𝑗) = 𝛽0 + 𝛽1𝑇𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽3𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 +  𝛽4𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑖

+  𝛽5𝑊𝑒𝑖𝑔ℎ𝑡_𝑎𝑡_𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑖 + 𝛽6𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗

+ 𝛽7𝑊𝑒𝑖𝑔ℎ𝑡. 𝑎𝑡. 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝𝑖 × 𝑇𝑖𝑚𝑒𝑖𝑗  + 𝛽8𝐴𝑔𝑒𝑖 + 𝛽9𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒2𝑖

+  𝛽10𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒3𝑖 + 𝛽11𝑊𝐻𝑂. 𝑆𝑡𝑎𝑔𝑒4𝑖 + 𝛽12𝐶𝐷4𝑖, 

where 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9, 𝛽10, 𝛽11 and 𝛽12 are regression coefficients.  

 

The error in both risk factors Adherence (𝑋𝑖𝑗,1) and weight at follow-up (𝑋𝑖𝑗,2) is assumed 

by 𝑾𝑖𝑗 = 𝑿𝑖𝑗 + 𝝐𝑖𝑗. Adherence and weight at follow up were measured together with viral load, 

thus if the patient did not go for viral load these too will be missing. One would want to assess the 

effect of baseline age 𝑍𝑖𝑗 in the missing data process. Hence, in this study, the missing data process 

was specified by the logistic regression model: 

𝑙𝑜𝑔𝑖𝑡 𝜋𝑖𝑗 = 𝑎0 + 𝛼𝑎𝑌𝑖𝑗−1 + 𝛼𝑏𝑋𝑖𝑗−1,1 + 𝛼𝑐𝑋𝑖𝑗−1,2 + 𝛼𝑑𝑍𝑖𝑗−1, 

for  𝑗 = 1,2,3,4. 

The concern here is how measurement error in Weight at follow-up and Adherence ART impacts 

the estimation of parameter   𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, β9, β10, 𝛽11, 𝛽12)𝑇. The following 

settings were used; 𝐵 = 50, 𝜆𝑀 = 2 and 𝑀 = 5.  In this application, the covariance matrix of 

measurement errors in the measurement error model was set as 

Σ𝜖 = (
𝜎1

2 𝜎12

𝜎21 𝜎1
2 ) = (

0.25 0
0 0.25

). 

Table 5.1: Coefficients associated with the response process 

 SWGEE   

Parameters 𝒍𝒐𝒈(𝑬𝒔𝒕) S.E t-value p-value 
 

    

Intercept (β0) 4.060 2.225 1.82 0.068 

Time (β1) -0.012 0.074 -0.170 0.866 

Gender (β2):     



 

65 
 

                      ref.Female 
 

   

Male 0.831 0.357 2.33 0.020 

Baseline Weight (β3) -0.027 0.023 -1.200        0.229   

Adherence (β4) 2.837 1.379 2.060 0.040 

Weight at follow up (β5) -0.032 0.027 -1.170    0.241   

Adherence ×Time (β6) -0.085 0.051    -1.680 0.094 

Weight at follow up ×Time (β7) 0.002 0.001 2.20 0.028 

Age (β8) 0.024 0.020 1.220    0.221   

WHO. Stage :     

ref.Stage I 
 

   

Stage II  (β9) 0.194 0.522 1.220 0.711 

Stage III (β10) -0.152 0.421 -0.360 0.718   

Stage IV  (β11) 1.986 1.931 1.030 0.304 

Baseline CD4 (𝛽12):     

ref.< 200 
 

   

≥ 200 -0.812   0.074    -0.170 0.866   

 

 

Table 5.2:  Coefficients associated with the missing process 

 SWGEE   

Parameters Est S.E t- value p-value 

 
    

α0 2.580 0.874 2.950 0.003 

αa -0.000 0.000 -0.050 0.956 

αb -0.710 0.517 -1.370 0.170 

αc -0.010 0.008 -1.240 0.216  
𝛼𝑑 -0.004 0.013 -0.310 0.757 

 

Table 5.2 shows the Coefficients associated with the missing process. From this table, the estimate 

of 𝛼𝑎 is −0.000 with a p-value of 0.956, which suggests that the probability that a patient will 

miss their next follow up was not significantly related to their previous viral load. The estimate of 

𝛼𝑏 is -0.710 with a p-value of 0.170, suggests that the probability that a patient will miss the next 

follow up was not significantly influenced by their adherence status. This implies that patients 

might have come for follow up but their decisions were not based on their previous adherence 

status. The estimate of 𝛼𝑐 is -0.010 with a p-value 0.216, indicates that the effect of weight at 
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follow-up in the missing data process was not statistically significant.  The estimate of  𝛼𝑑 is -

0.004 with a p-value of 0.757, this means that baseline age did not have an impact on the 

missingness model. In this analysis, some measurements of the viral load were missing while 

gender, baseline weight and WHO stage were completely observed. The missing values of viral 

load were MCAR since the probability of observing viral load was independent of gender, baseline 

weight and WHO stage and the values of viral load that were observed or would have been 

observed. Therefore, these results suggested that the assumption of MCAR was more appropriate 

than that of MAR.  

 

5.4. Summary 

 Problems associated with incomplete gathered data in longitudinal and clinical trials have received 

considerable attention in recent times (Molenberghs and Verbeke 2000; Fitzmaurice et al. 2004; 

Molenberghs and Verbeke 2005; Molenberghs and Kenward 2007; Daniels and Hogan 2008; 

Fitzmaurice et al. 2008). However, analysis of longitudinal data with response missingness and 

covariate measurement error received little attention. In this chapter, a longitudinal study on viral 

load of HIV/AIDS patients was used to account for effects of response missingness and covariate 

measurement error on estimation of response model parameters. The swgee R package by Xiong 

and Yi, 2019 was used for all the analysis. These findings are discussed in details in chapter 6.  
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CHAPTER 6 : DISCUSSION, CONCLUSION AND   

RECOMMENDATIONS 
 

6.1.  Discussion  

This study aimed to accomplish four research objectives, which were: 

• To explore the average change of HIV viral load in patients on ART over time 

• To model the change in viral load over time using Mixed effects models and Generalized 

estimating equations. 

• To investigate the effects of clinical factors and demographic characteristics on viral load. 

• To model viral load longitudinal data adjusting for the bias induced by measurement error 

in covariates as well as missingness in response variable.  

This was a retrospective cohort study which used data from 154 patients initiated on ART at 

Luderitz hospital between January 2015 and December 2017. Adherence to ART among these 

patients was quite good over time and different models (Mixed effects model, GEE and models 

for missing data and covariates with measurement error) for modeling correlated data were used 

in the study with the best models selected using AIC and QIC. The results were close to one 

another, but the model which incorporated missing data and measurement error was most 

preferred. 

 

After accounting for missingness and measurement error, adherence to ART was found to have a 

significant effect on viral load. Viral load decreased and suppression over time was associated with 

consistent adherence to antiretroviral therapy (ART). Patients with good adherence throughout 
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ART tend to have their viral load suppressed within 12 months of the therapy. Despite adherence 

being found to be an important factor in influencing treatment outcome, there are no standard 

guidelines for its measurement (Nachega et.al, 2014). 

The analysis of gender difference found that viral load in female patients was significantly low 

than that of male patients. This was supported by the fact that the progression rates to AIDS and 

clinical manifestations of diseases associated with HIV infection differs between women and men 

because of biological and socioeconomic factors (Nicastri & Angeletti, 2005). According to the 

WHO guidelines, virological failure is observed when patients sustain a viral load > 1000 

copies/ml after 6 to 12 months of ART, the average viral load of males in this study was still >1000 

at 12 months of ART. In this study, 85% of females started ART at stage 1 and 2, whereas only 

65% of the males started therapy at early stages. In general, females were found to start ART at a 

less advanced disease stage, with higher CD4 and at earlier stage of the infection. Similar findings 

were reported in other studies (Cornell, Schomaker & Garone, 2012). 

 

Although baseline CD4 count did not have a significant effect on viral load in this study, it is 

believed that patients who started ART with low CD4 count often have high viral load and usually 

take long to have their viral load suppressed or might have worse treatment outcomes. CD4 counts 

are collected for clinical reasons to evaluate the stage of HIV infection. Patients who enter 

treatment at a significantly more advanced stage of HIV infection get predisposed to increased 

mortality and worse treatment outcomes (Mosha et.al, 2013). In this study the records of baseline 

CD4 counts were poor, this could be because baseline CD4 count was not a requirement for one 

to start ART thus it was not measured for many patients. Furthermore, this study found that WHO 

staging did not have a significant effect on time-varying viral load. According to Jaffar et al, (2008) 
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the accuracy of the WHO clinical stage criteria is unknown in a normal health service delivery 

setting, where training and clinical support of clinical staff can vary. 

 

The findings of this study were limited by a few issues. The data did not reflect what happened to 

the patients who did not have viral load at all time-points and there was a high percentage (64.5%) 

of loss to follow-up patients by the end of the 36th month,  but this may however be attributed to 

attrition. Also, some clinical information that may have been useful in the modeling of viral load 

in response to ART such as ARV regimen and socioeconomic factors were missing in the ART 

data. Furthermore, the patient cohort used in this study was relatively small (154) and might not 

have represented all HIV-infected patients on ART at the Luderitz hospital.  

 

6.2. Conclusion 

The main objective of this study was to model and study the change in longitudinally measured 

viral load given time-varying adherence of patients on ART at the Luderitz Hospital in the !Karas 

region of Namibia. The study found that viral load was higher in male patients at baseline and 

takes longer (approximately 24 months) for them to achieve viral suppression compared to female 

patients on ART. In addition, gender, weight at follow-up and adherence were found to be 

significant predictors of patients’ viral load at 5% significance level, although baseline weight was 

found to be significant in the mixed effects models and the GEE models for both correlation 

structures. This could be due to missingness and measurement error of covariates which were not 

accounted for in these models. In conclusion, viral load in patients on ART differ by patients’ 

demographic characteristics (age and gender) and clinical characteristics (baseline CD4 and 

adherence to ART).  
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6.3 Recommendations  
 

It is crucial for the special disease program to continue monitoring patients on ART and their viral 

load for treatment outcome. This study recommended that HCWs should put in an effort in 

monitoring viral load of patients on ART on the scheduled viral load visit as well as in recording 

it. In addition, they should strengthen the tracing of patients who have missed their viral load 

appointment or are lost to follow up. This study did not have access to the patients’ ARV regimen 

and socioeconomic factors, thus it recommended that future researchers may add these as they 

might have a huge effect on adherence to ART as well as on viral load. Furthermore, the policy 

makers should come up with a standard approach for measuring adherence since tablet count does 

not really reflect the true picture- a patient coming back with a correct number of tablets does not 

necessarily mean that they have taken their medicine. Project managers should put in place a well 

monitored data cleaning system to ensure their data is of quality.  
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Appendix 
 

Appendix A: R codes using LME4 package  

library("nlme") 

library(lme4) 

SampleData<-read.csv(file.choose(), head=T) # Load CSV dataset 

#==========CREATE DATASET============================= 

ViralLoad<-SampleData$Viral_Load 

Time<-SampleData$Time_in_months 

Gender<-as.factor(SampleData$Gender) 

Weight_at_Followup<-SampleData$Weight_at_Followup 

Weight<-SampleData$Baseline_Weight 

Adherence<-as.factor(SampleData$Adherence_ART) 

Age<-SampleData$Age 

WHO.Stage<-as.factor(SampleData$WHO_STAGE) 

CD4<-as.factor(SampleData$CD4_GROUP) 

Id<-SampleData$Patient.ID 

O<-SampleData$O 

#========================DATASET===================================

= 

Dat<-data.frame(ViralLoad,Id, Time,Gender, Weight, Adherence,CD4, Age, 

Weight_at_Followup, WHO.Stage, O) 

#Dat <- within (Dat, Adherence <- relevel (Adherence, ref = 99)) 

#=======================FIXED EFFECTS MODEL   ====================== 

 Model11<-lm(log(ViralLoad)~Time +Gender+ CD4 + Adherence*Time + Age  + Weight + 

Weight_at_Followup*Time +WHO.Stage, data=Dat, na.action=na.omit) 

  summary(Model11) 

  logLik(Model11) 
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  AIC(Model11)   

  #========================MODEL ONE (LME)==========================    

 Model55<-lme(log(ViralLoad)~Time + CD4 +Gender+ Adherence*Time + Age + 

Weight_at_Followup*Time + WHO.Stage,random=~ 1 + Time | Id, data=Dat, na.action=na.omit) 

  summary(Model55) 

  anova(Model22 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

88 
 

  Appendix B: R codes using geepack package  

set.seed(1234) 

#==========Required packages=========================================== 

library("geepack") 

library(MASS) 

library("swgee") 

library("gee") 

library(lme4) 

SampleData<-read.csv(file.choose(), head=T) #Load CSV dataset 

#=======================CREATEDATASET========================== 

ViralLoad<-SampleData$Viral_Load 

Time<-SampleData$Time_in_months 

Gender<-as.factor(SampleData$Sex) 

Weight_at_Followup<-SampleData$Weight_at_Followup 

Weight<-SampleData$Baseline_Weight 

Adherence<-as.factor(SampleData$Adherence_ART) 

Age<-SampleData$Age 

WHO.Stage<-as.factor(SampleData$WHO_STAGE) 

CD4<-as.factor(SampleData$CD4_GROUP) 

Id<-SampleData$Patient.ID 

O<-SampleData$O 

#========================DATASET================================== 

Dat<-data.frame(ViralLoad, Id, Time, Gender, Weight, Adherence, CD4, Age, 

Weight_at_Followup, WHO.Stage, O) 

#=======GEE with Unstructured correlation=============================== 

Model1<-gee(log(ViralLoad)~Time +Gender+ Adherence*Time + Age + CD4 + Weight + 

Weight_at_Followup*Time + WHO.Stage, id=Id,data=Dat, family=gaussian(link="identity"), 

corstr="unstructured") 
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summary(Model1) 

PValue1<-2*pnorm(abs(coef(summary(Model1))[,5]), lower.tail = FALSE) 

  PValue1 

#=============GEE with Independence correlation======================= 

Model2<-gee(log(ViralLoad)~Time + Gender + Adherence*Time + Age + CD4 + Weight + 

Weight_at_Followup*Time + WHO.Stage, id=Id,data=Dat, family=gaussian(link="identity"), 

corstr="independence") 

summary(Model2) 

PValue2<-2*pnorm(abs(coef(summary(Model2))[,5]),lower.tail = FALSE) 

PValue2  

#====================Quasi Information Criterion====================== 

QIC.long.gee <- function(model.R,model.independence) 

  { 

    #calculates Gaussian Quasi-Likelihood 

    AIinverse <- solve(model.independence$naive.variance) 

    V.msR <- model.R$robust.variance 

    trace.term <- sum(diag(AIinverse%*%V.msR)) 

    #estimated mean and observed values 

    mu.R <- model.R$fitted.values 

    y <- model.R$y 

    #quasilikelihood for Gaussian model 

    Quasi.R = sum(((y - mu.R)^2)/-2) 

    QIC <- (-2)*Quasi.R + 2*trace.term 

    output <- c(QIC,Quasi.R, trace.term) 

    names(output) <- c('QIC','Quasi Lik','Trace') 

    output 

  } 

   sapply(list(Model1, Model2), function(x) QIC.long.gee(x,Model1))    
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Appendix C: R codes using swgee package  

 

library("swgee") 

SampleData<-read.csv(file.choose(), head=T) #Load csv dataset 

set.seed(1000) 

sigma <- diag(rep(0.25, 2)) 

set.seed(1000) 

sigma <- diag(rep(0.25, 2)) 

 output3 <- swgee(log(Viral_Load)~Time_in_months + as.factor(CD4_GROUP) + 

as.factor(Gender)+Baseline_Weight+Adherence_ART*Time_in_months + Age + 

as.factor(WHO_STAGE)+Weight_at_Followup*Time_in_months,data=SampleData,id=Patient.I

D,family=gaussian(link="identity"),corstr="unstractured",missingmodel=O~log(Viral_Load)+A

dherence_ART+Weight_at_Followup,SIMEXvariable=c("Weight_at_Followup","Adherence_A

RT"), SIMEX.err=sigma, repeated=FALSE, B=50, lambda=seq(0, 2, 0.5)) 

summary(output3) 

 

 


