A hybrid analysis approach to the high energy stereoscopic system phase II mono-analysis

Loading...
Thumbnail Image
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
University of Namibia
Abstract
The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes located in the Khomas highlands of Namibia. Their primary purpose is to detect Cherenkov light (CL) produced by particles in extensive air showers which are produced by incident high energy particles (gamma rays or cosmic rays) on the Earth's atmosphere. The array consists of four 107 m2 optical telescopes and a larger 614 m2 collective surface area telescope in the center of the array. The larger telescope has the ability of detecting showers induced by lower energy gamma rays therefore, it's addition to the array meant a lower threshold for the entire array. This can be accomplished by sophisticated analysis techniques, however, the analysis techniques that have thus far been used have not increased the integral sensitivity of the array as a whole as would be expected, but perform worse than the standard analysis technique at medium and high energies. Data taken by the H.E.S.S. telescopes is analyzed by fitting parameterized shower model images to actual images produced when observing a source, (Model++ Analysis) using a goodness of fit approach. This work explores the distribution of a shower parameter introduced in 2009, the depth of first interaction. Adjustments to the primary depth selection criteria to distinguish signal against noise are made and applied for a more sensitive result. Multi-wavelength lag studies from Cygnus X-3 are also presented. Light curve correlations between hard/soft X-rays versus radio emissions over long periods are studied. These studies are layed out as supporting suggestions that, lowering energy threshold while maintaining integral sensitivity to those energies would assist in the study of micro-quasars and possibly infer properties of quasars.
Description
A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science Physics
Keywords
High energy stereoscopic system
Citation